已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-3,).
(1)求sin 2α-tan α的值;
(2)若函數(shù)f(x)=cos(x-α)cos α-sin(x-α)sin α,求函數(shù)y=f-2f2(x)在區(qū)間上的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了得到函數(shù)y=2sin(x∈R)的圖象,只需把函數(shù)y=2sinx(x∈R)的圖象上所有的點經(jīng)過怎樣的變換得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖像如圖所示,
(1)求ω,φ的值;
(2)設(shè)g(x)=2f f-1,當(dāng)x∈[0,]時,求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,函數(shù)f(x)=-2asin(2x+)+2a+b,當(dāng)x∈[0,]時,-5≤f(x)≤1.
(1)求常數(shù)a,b的值.
(2)設(shè)g(x)=f(x+)且lg g(x)>0,求g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()的最小正周期為.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位,再向上平移個單位,得到函數(shù)的圖象.若在上至少含有個零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某園林單位準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花,若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形的PQRS面積為S2.
(1)用a,θ表示S1和S2;
(2)當(dāng)a固定,θ變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=(弦´矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.
按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于9米的弧田.
(1)計算弧田的實際面積;
(2)按照《九章算術(shù)》中弧田面積的經(jīng)驗公式計算所得結(jié)果與(1)中計算的弧田實際面積相差多少平方米?(結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2sin (0≤x≤5),點A、B分別是函數(shù)y=f(x)圖象上的最高點和最低點.
(1)求點A、B的坐標(biāo)以及·的值;
(2)設(shè)點A、B分別在角α、β的終邊上,求tan(α-2β)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com