【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
【答案】
(1)證明:∵BC=B1C1=1,CD=C1D= BB1=1,∠BCC1= ,∠B1C1D=π﹣∠BCC1= ,
∴BD=1,B1D= ,
∴BB12=BD2+B1D2,∴BD⊥B1D.
∵AB⊥平面BB1C1C,BD平面BB1C1C,
∴AB⊥B1D,又AB平面ABD,BD平面ABD,AB∩BD=B,
∴DB1⊥平面ABD
(2)解:以B為原點,以BB1,BA所在直線為x軸,z軸建立空間直角坐標系B﹣xyz,如圖所示:
則A(0,0,2),D( , ,0),B1(2,0,0),A1(2,0,2),
∴ =( ,﹣ ,0), =(﹣2,0,2), =(0,0,2).
設平面AB1D的法向量為 =(x1,y1,z1),平面A1B1D的法向量為 =(x2,y2,z2),
則 , ,即 , ,
令x1=1得 =(1, ,1),令x2=1得 =(1, ,0).
∴cos< , >= = = .
∵二面角A﹣B1D﹣A1是銳角,
∴二面角A﹣B1D﹣A1的平面角的余弦值為 .
【解析】(1)利用余弦定理計算BD,B1D,再由勾股定理的逆定理得出BD⊥B1D,由AB⊥平面BB1C1C得出AB⊥B1D,于是得出B1D⊥平面ABD;(2)以B為原點建立坐標系,求出平面AB1D的法向量 ,平面A1B1D的法向量 ,計算cos< , >即可得出二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函數(shù)f(x)= 的圖象關于直線x= 對稱,求角A,B.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點E、M為線段BC、AD的中點,F(xiàn),G分別為線段PA,AE上一點,且AB=AD=2,PF=2FA.
(1)確定點G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在拋物線 上, 點到拋物線的焦點的距離為2,直線
與拋物線交于兩點.
(1)求拋物線的方程;
(2)若以為直徑的圓與軸相切,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣ae2x(a∈R)恰有兩個極值點x1 , x2(x1<x2),則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的方程為 ,⊙C的極坐標方程為ρ=4cosθ+2sinθ.
(1)求直線l和⊙C的普通方程;
(2)若直線l與圓⊙C交于A,B兩點,求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】解答題
(1)求函數(shù)y=2|x﹣1|﹣|x﹣4|的值域;
(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設, 分別為雙曲線的左、右焦點, 為雙曲線的左頂點,以, 為直徑的圓交雙曲線某條漸近線于, 兩點,且滿足,則該雙曲線的離心率為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com