【題目】已知點是平行四邊形所在平面外一點,如果,.(1)求證:是平面的法向量;

(2)求平行四邊形的面積.

【答案】(1)證明見解析;(2).

【解析】試題分析:

(1)由題意結合空間向量數(shù)量積的運算法則計算可得.,結合線面垂直的判斷定理可得平面,是平面的法向量.

(2)利用平面向量的坐標計算可得,,,.

試題解析:

(1),

.

,,又,平面,

是平面的法向量.

(2) ,,

,

,

.

型】解答
束】
19

【題目】(1)求圓心在直線,且與直線相切于點的圓的方程;

(2)求與圓外切于點且半徑為的圓的方程.

【答案】(1);(2).

【解析】試題分析:

(1)由題意可得圓的一條直徑所在的直線方程為,據此可得圓心,半徑,則所求圓的方程為.

(2)圓的標準方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設所求圓心為結合弦長公式可得,.則圓的方程為.

試題解析:

(1)過點且與直線垂直的直線為,

.

即圓心,半徑,

所求圓的方程為.

(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設所求圓心為,

,,

.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且a2=2b.

(1)求橢圓的方程;

(2)直線l:x﹣y+m=0與橢圓交于A,B兩點,是否存在實數(shù)m,使線段AB的中點在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從種植有甲、乙兩種麥苗的兩塊試驗田中各抽取6株麥苗測量株高,得到的數(shù)據如下(單位:):

甲:9,10,11,121020

乙:8,14,1310,1221

1)用莖葉圖表示這些數(shù)據:

2)分別計算兩組數(shù)據的中位數(shù)、平均數(shù)與方差,并由此估計甲、乙兩種麥苗株高的平均數(shù)及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】試比較3-(n為正整數(shù))的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:

(1)根據表中的數(shù)據,求出關于的線性回歸方程;

(2)若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數(shù)能否超過20 萬人.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形,平面,,,為的中點.

(Ⅰ) 求證: 平面

(Ⅱ) 求證:

(Ⅲ)若為線段上的點,當三棱錐的體積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列結論:

①若為真命題,則、均為真命題;

②命題“若,則”的逆否命題是“若,則”;

③若命題,,則;

④“”是“”的充分不必要條件.其中正確的結論有____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線焦點的直線與拋物線交于,兩點,與圓交于兩點,若有三條直線滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案