3.不等式x+$\frac{2}{x}$>2的解集為{x|x>0}.

分析 把要解的不等式等價轉(zhuǎn)化為多項式不等式,即可求得它的解集.

解答 解:不等式x+$\frac{2}{x}$>2,即$\frac{{x}^{2}-2x+2}{x}$>0,
∵x2-2x+2=(x-1)2+1≥1,∴$\frac{{x}^{2}-2x+2}{x}$>0,等價于x>0.
它的解集為{x|x>0},
故答案為:{x|x>0}.

點評 本題主要考查分式不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(1,1,-4).
(1)計算2$\overrightarrow{a}$-3$\overrightarrow$和|2$\overrightarrow{a}$-3$\overrightarrow$|;
(2)求<$\overrightarrow{a}$,$\overrightarrow$>

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知長方體ABCD-A′B′C′D′,AA′=1,AB=$\sqrt{3}$.BC=2,求異面直線A′B與DC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D、E分別用AB,AC的中點.
(1)求AC與BC1所成角;
(2)求異面直線AC1與B1C所成角的余弦值;
(3)求C1E與B1D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在區(qū)間(-∞,1)上是增函數(shù)的是( 。
A.y=$\frac{1}{x-1}$B.y=-x2+2x-1C.y=log2(1-x)D.y=2${\;}^{\frac{1}{x}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)已知f(x)為二次函數(shù),且f(0)=2,f(x+1)-f(x)=x-1,求f(x);
(2)已知3f(x)+2f(-x)=x+3,求f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)是定義在R上的偶函數(shù),其圖象是一條連續(xù)不斷的曲線,當x>0時,f′(x)>0.若實數(shù)t滿足f(log2t+f(log${\;}_{\frac{1}{2}}$t)≤2f(2),則t的取值范圍是[$\frac{1}{4}$,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設函數(shù)f(1-$\frac{1-x}{1+x}$)=x.則f(x)的表達式為f(x)=$\frac{x}{2-x}$,(t≠2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.類比“兩角和與差的正弦公式”的形式,對于給定的兩個函數(shù):S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正確的運算公式是③④
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).

查看答案和解析>>

同步練習冊答案