若關(guān)于x,y的不等式組
x≥0
y≥x
kx-y+1≥0
  表示的平面區(qū)域是一個銳角三角形,則k的取值范圍是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,根據(jù)所表示的平面區(qū)域是一個銳角三角形,即可確定a的取值范圍.
解答: 解:作出不等式對應(yīng)的平面區(qū)域,如圖,
當(dāng)直線kx-y+1=0和直線y=x垂直時,兩直線的斜率分別為k,1,
此時k=-1,
當(dāng)直線kx-y+1=0和直線x=0垂直時,則直線的斜率分別為k=0,
此時對應(yīng)的三角形AOB和AOC是直角三角形,不滿足條件,
∴要使所表示的平面區(qū)域是一個銳角三角形,
則D位于線段BC內(nèi),
則直線的斜率k滿足-1<k<0,
故答案為:(-1,0).
點評:本題主要考查二元一次不等式組表示平面區(qū)域的內(nèi)容,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點為F,點P是拋物線上的動點,點A(3,2)求|PA|+|PF|最小時,點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x、y滿足
y≤2
x+y≥1
x-y≤1
,則z=
x2+y2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)的函數(shù),對任意實數(shù)x,y∈(0,+∞),都有f(xy)=f(x)+f(y),且當(dāng)x>1時,f(x)<0;f(3)=-1.
(1)求f(9);
(2)判斷f(x)在(0,+∞)上的單調(diào)性;
(3)在我們所學(xué)的函數(shù)中寫出一個符合條件的函數(shù),在此條件下解不等式:f(x-2)>1-f(
1
4-x
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是△ABC的重心,若A=
3
,
AB
AC
=-3,則|
AP
|的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(1)=1,若將f(x)的圖象向右平移一個單位后,得到一個偶函數(shù)的圖象,則f(1)+f(2)+f(3)+…+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足約束條件
x+y≤3
x-y≥-1
y≥1
,則
y+2
x+1
的取值范圍為( 。
A、[0,1]
B、[1,2]
C、[1,3]
D、[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列選項中正確的是( 。
A、若
a
、
b
都是單位向量,則
a
=
b
B、若
AB
=
BC
,則A、B、C、D四點構(gòu)成平行四邊形
C、若
a
b
是共線向量,
b
c
是共線向量,則
a
c
是共線向量
D、
a
b
方向上的投影是實數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,|
AD
|=4
3
,設(shè)
AB
=
a
,
BC
=
b
BD
=
c
,則|
a
+
b
+
c
|=( 。
A、4
3
B、
3
C、8
3
D、2
3

查看答案和解析>>

同步練習(xí)冊答案