6.直線x=2被圓(x-1)2+y2=4所截得的弦長(zhǎng)是( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.4

分析 由圓的方程,得到圓心與半徑,求得圓心到直線的距離,利用勾股定理求解弦長(zhǎng).

解答 解:∵(x-1)2+y2=4,∴圓心為:(1,0),半徑為:2
圓心到直線的距離為:d=1,
∴直線x=2被圓(x-1)2+y2=4所截得的弦長(zhǎng)是2$\sqrt{4-1}$=2$\sqrt{3}$,
故選B.

點(diǎn)評(píng) 本題主要考查直與圓的位置關(guān)系及其方程的應(yīng)用,是?碱}型,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若角α是銳角,則sinα+cosα+$\frac{2\sqrt{2}}{sin(α+\frac{π}{4})}$的最小值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$\sqrt{3}$a=2csinA.
(1)求角C的值;
(2)若c=$\sqrt{13}$,且S△ABC=3$\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知sinθ+cosθ=$\frac{1}{2}$,則sin(π-2θ)=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知tan(α+$\frac{π}{3}$)=2,則$\frac{sin(α+\frac{4π}{3})+cos(\frac{2π}{3}-α)}{cos(\frac{π}{6}-α)-sin(α+\frac{5π}{6})}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=3sin(2x-$\frac{π}{3}}$)的圖象為C,則下列結(jié)論中正確的序號(hào)是①②.
①圖象C關(guān)于直線x=$\frac{11π}{12}$對(duì)稱;
②圖象C關(guān)于點(diǎn)(${\frac{2π}{3}$,0)對(duì)稱;
③函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}}$)內(nèi)不是單調(diào)的函數(shù);
④由y=3sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖是一個(gè)四棱錐的三視圖,則該幾何體的體積為$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{e^x-e^{-x}}{e^x+e^{-x}}$(x∈R),e是自然對(duì)數(shù)的底.
(1)計(jì)算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)M,N分別為雙曲線x2-$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn),若P在雙曲線上,且$\overrightarrow{PM}•\overrightarrow{PN}$=0,則|$\overrightarrow{PM}$|+|$\overrightarrow{PN}$|=$2\sqrt{19}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案