在△ABC中,角A、B、C所對的邊的長度分別為a、b、c,且a2+b2-c2=
3
ab,則∠C=
 
考點:余弦定理
專題:三角函數(shù)的求值
分析:利用余弦定理表示出cosC,將已知等式代入計算求出cosC的值,即可確定出C的度數(shù).
解答: 解:∵a2+b2-c2=
3
ab,
∴cosC=
a2+b2-c2
2ab
=
3
2
,
∵∠C為三角形的內(nèi)角,
∴∠C=
π
6

故答案為:
π
6
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求不等式(x-2)(1-3x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,右焦點F(1,0).設(shè)O為坐標(biāo)原點,M是直線l:x=2上的動點,過點F作OM的垂線與以O(shè)M為直徑的圓D交于P、Q兩點,則PO=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的線段l及點P,在l上任取一點Q,線段PQ長度的最小值稱為點P到線段l的距離,記作d(P,l).設(shè)l是長為2的線段,點集D={P|d(P,l)≤1}所表示圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|sin
π
2
x|+|cos
π
2
x|的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
4
=1的左焦點為F1,右焦點為F2,點P在橢圓上,則
PF1
PF2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在點x=x0處連續(xù)是f(x)在x=x0處可導(dǎo)的( 。
A、必要條件
B、充分條件
C、充分必要條件
D、既非充分條件又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的參數(shù)方程為
x=a+2cosθ 
y=a2+2sinθ
(θ為參數(shù)),設(shè)圓心C的軌跡方程為曲線M,若斜率為2的直線L與曲線M相切,且被圓C截得的弦長為
4
5
5
,則a的可能取值的集合是( 。
A、{1,3}
B、{-1,-3}
C、{-1,3}
D、{1,-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,點H、G分別是線段EF、BC的中點.
(1)求證:平面AHC⊥平面BCE;
(2)點M在直線EF上,且MG∥平面AFD,求平面ACH與平面ACM所成銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案