4.如圖,在四棱錐A-BCFE中,四邊形EFCB為梯形,EF∥BC,且EF=$\frac{3}{4}$BC,△ABC是邊長為2的正三角形,頂點F在AC上的射影為點G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)證明:平面FGB⊥平面ABC;
(2)求二面角E-AB-F的余弦值.

分析 (1)推導(dǎo)出FG⊥AC,取AC的中點為O,連結(jié)OB,GB,推導(dǎo)出FG⊥BG,F(xiàn)G⊥AC,從而FG⊥面ABC,由此能證明面FGB⊥面ABC.
(2)以O(shè)B所在直線為x軸,OC所在直線為y軸,過點O作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角E-AB-F的余弦值.

解答 證明:(1)由頂點F在AC上投影為點G,可知,F(xiàn)G⊥AC.
取AC的中點為O,連結(jié)OB,GB.
在Rt△FGC中,$FG=\sqrt{3}$,$CF=\frac{{\sqrt{21}}}{2}$,所以$CG=\frac{3}{2}$.
在Rt△GBO中,$OB=\sqrt{3}$,$OG=\frac{1}{2}$,所以$BG=\frac{{\sqrt{13}}}{2}$.
所以,BG2+GF2=FB2,即FG⊥BG.
∵FG⊥AC,F(xiàn)G⊥GB,AC∩BG=G
∴FG⊥面ABC.
又FG⊆面FGB,所以面FGB⊥面ABC.
解:(2)由(Ⅰ)知,OB⊥FG,OB⊥AC,且AC∩FG=G
所以  OB⊥面AFC,且FG⊥面ABC.以O(shè)B所在直線為x軸,OC所在直線為y軸,
過點O作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,如圖所示:
$A(0,-1,0),B(\sqrt{3},0,0),F(xiàn)(0,-\frac{1}{2},\sqrt{3})$,E($\frac{3\sqrt{3}}{4}$,-$\frac{5}{4}$,$\sqrt{3}$),
$\overrightarrow{BA}=(-\sqrt{3},-1,0)$,$\overrightarrow{BE}$=(-$\frac{\sqrt{3}}{4}$,-$\frac{5}{4}$,$\sqrt{3}$),$\overrightarrow{BF}$=(-$\sqrt{3},-\frac{1}{2},\sqrt{3}$),
設(shè)平面ABE,ABF的法向量分別為$\overrightarrow{m}=(x,y,z)$,$\overrightarrow{n}=(a,b,c)$,
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BA}=0}\\{\overrightarrow{m}•\overrightarrow{BE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\sqrt{3}x-y=0}\\{-\frac{\sqrt{3}}{4}x-\frac{5}{4}y+\sqrt{3}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-$\sqrt{3}$,1),
$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{BA}=0\\ \overrightarrow n•\overrightarrow{BF}=0\end{array}\right.$,即$\left\{\begin{array}{l}{-\sqrt{3}a-b=0}\\{-\sqrt{3}a-\frac{1}{2}b+\sqrt{3}c=0}\end{array}\right.$,取a=1,得$\overrightarrow n=(1,-\sqrt{3},\frac{1}{2})$,
設(shè)二面角E-AB-F的平面角為θ.
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\frac{9}{2}}{\sqrt{5}•\sqrt{\frac{17}{4}}}$=$\frac{9\sqrt{85}}{85}$.
所以二面角E-AB-F的余弦值為$\frac{9\sqrt{85}}{85}$.

點評 本題考查面面垂直的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.有6名學(xué)生,其中有3名會唱歌,2名會跳舞,1名既會唱歌又會跳舞,現(xiàn)從中選出2名會唱歌的,1名會跳舞的,去參加文藝演出,求所有不同的選法種數(shù)為(  )
A.18B.15C.16D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.社區(qū)主任要為小紅等4名志愿者和他們幫助的2位老人拍照,要求排成一排,小紅必須與兩位老人都相鄰,且兩位老人不能排在兩端,則不同的排法種數(shù)為(  )
A.24B.20C.16D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,我校計劃建一個面積為200m2的矩形場地,要求矩形場地的一面利用舊墻(舊墻需要維修),其余三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為41元/米,新墻的造價為400元/米.設(shè)利用舊墻的長度為x(單位:米),修建此矩形場地圍墻的總費用y(單位:元).
(1)將y表示為x的函數(shù);
(2)求當(dāng)x為何值時,y取得最小值,并求出此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,且a2=2,a3=2+2a1
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{$\frac{2n-1}{{a}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$不平行,向量$\overrightarrow{a}$+m$\overrightarrow$與(2-m)$\overrightarrow{a}$+$\overrightarrow$平行,則實數(shù)m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)數(shù)列{an}的前n項和為Sn,已知S2=4,an+1=2Sn+1,則{an}的通項公式為an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{{{e^x}+a}}{{{e^x}-1}}$為奇函數(shù).
(1)則a=1
(2)函數(shù)g(x)=f(x)-$\frac{2}{x}$的值域為(-1,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x和y的值分別為(  )
A.3,5B.5,5C.3,7D.5,7

查看答案和解析>>

同步練習(xí)冊答案