分析 (1)通過設等比數(shù)列{an}的公比為q,利用等差中項計算可知q=2,進而計算可得結論;
(2)通過(1)及等比數(shù)列的求和公式計算可知Tn=2(1-$\frac{1}{{2}^{n}}$),進而計算可得結論.
解答 解:(1)設等比數(shù)列{an}的公比為q,則a4=4q,a5=4q2,
∵a3,a4+2,a5成等差數(shù)列,
∴2(a4+2)=a3+a5,即2(4q+2)=4+4q2,
整理得:q(q-2)=0,解得:q=2或q=0(舍),
∴數(shù)列{an}的通項公式an=a3qn-3=2n-1;
(2)由(1)可知$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n-1}}$,Tn=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2(1-$\frac{1}{{2}^{n}}$),
又∵Tn<m對任意n∈N*恒成立,
∴m≥2.
點評 本題是一道關于數(shù)列與不等式的綜合題,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3∈A | B. | 5∈A | C. | 2$\sqrt{6}$∈A | D. | 4$\sqrt{3}$∈A |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com