證明:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上的任一點(diǎn)到兩條漸近線距離之積為定值.
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用點(diǎn)到直線的距離公式,結(jié)合雙曲線方程,即可得出結(jié)論.
解答: 證明:設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上的任一點(diǎn)(x,y),兩條漸近線方程為bx±ay=0,
∴雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上的任一點(diǎn)到兩條漸近線距離之積為
(bx+ay)(bx-ay)
(
b2+a2
)2
=
a2b2
b2+a2
定值.
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且側(cè)棱垂直于底面,由B沿棱柱側(cè)面經(jīng)過(guò)棱CC1到點(diǎn)A1的最短路線長(zhǎng)為2
5
,設(shè)這條最短路線與交于點(diǎn)D.
(1)求三棱柱ABC-A1B1C1的棱長(zhǎng);
(2)求四棱錐A1-BCC1B1的體積;
(3)在平面A1BD內(nèi)是否存在過(guò)點(diǎn)D的直線與平面ABC平行?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若4x=12,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={1,2,3,…,2010},集合A滿足A⊆M,且當(dāng)x∈A時(shí),15x∉A,則A中元素最多有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市理論預(yù)測(cè)2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示:
200x12345
人口數(shù)y(十)萬(wàn)35679
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求最小二乘法求出y關(guān)于x的線性回歸方程
y
=bx+a;
(3)據(jù)此估計(jì)2010年.該城市人口總數(shù).(參考公式:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸上有一頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為3和1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)點(diǎn)(1,0)且斜率為k(k≠0)的直線l交橢圓E于M,N兩點(diǎn),弦MN的垂直平分線與x軸相交于點(diǎn)D,設(shè)弦MN的中點(diǎn)為P,試求
|DP|
|MN|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知∠BAD=90°的等腰△ABD與正△CBD所在平面成60°的二面角,則AB與平面BCD所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線與橢圓
x2
5
+y2=1共焦點(diǎn),且一條漸近線方程是
3
x-y=0,則該雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式x2-2ax-3a2<0,解集為A,不等式x2+x-6<0的解集是B,
(1)a=1時(shí),求A∩B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案