A. | 4 | B. | 8 | C. | 2 | D. | 1 |
分析 求出y=x+lnx的導(dǎo)數(shù),求得切線的斜率,可得切線方程,再由于切線與曲線y=ax2+(a+2)x+1相切,有且只有一切點,進而可聯(lián)立切線與曲線方程,根據(jù)△=0得到a的值.
解答 解:y=x+lnx的導(dǎo)數(shù)為y′=1+$\frac{1}{x}$,
曲線y=x+lnx在x=1處的切線斜率為k=2,
則曲線y=x+lnx在x=1處的切線方程為y-1=2x-2,即y=2x-1.
由于切線與曲線y=ax2+(a+2)x+1相切,
y=ax2+(a+2)x+1可聯(lián)立y=2x-1,
得ax2+ax+2=0,
又a≠0,兩線相切有一切點,
所以有△=a2-8a=0,
解得a=8.
故選:B.
點評 本題考查導(dǎo)數(shù)的運用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點處的導(dǎo)數(shù)即為曲線在該點處的導(dǎo)數(shù),設(shè)出切線方程運用兩線相切的性質(zhì)是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 半徑為3的圓面積 | B. | 半徑為3的半圓面積 | ||
C. | 半徑為3的圓面積的四分之一 | D. | 半徑為3的半圓面積的四分之一 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 鈍角三角形 | B. | 直角三角形 | C. | 銳角三角形 | D. | 正三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{1}{3},1)$ | B. | $(-∞,-\frac{1}{3})∪(1,+∞)$ | C. | $(-\frac{1}{3},\frac{1}{3})$ | D. | $(-∞,-\frac{1}{3})∪(\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com