已知、是不重合的平面,、、是不重合的直線,給出下列命題:
;②;③
其中正確命題的個數(shù)是(      )
A.3B.2 C.1D.0
C

試題分析:對于①,根據(jù)面面垂直的判定定理可知①正確;對于②,以正方體過同一個頂點的三條棱為、,可得,但是是相交直線,∴②不正確;對于③,∵,,∴有可能在內(nèi),或與平行,或與相交,∴③不正確,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,多面體ABCA1B1C1中,三角形ABC是邊長為4的正三角形,AA1BB1CC1,AA1⊥平面ABC,AA1BB1=2CC1=4.

(1)若OAB的中點,求證:OC1A1B1;
(2)在線段AB1上是否存在一點D,使得CD∥平面A1B1C1,若存在,確定點D的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)α和β為不重合的兩個平面,給出下列命題:
①若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;
②若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;
③設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;
④直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.
上面命題中,真命題的序號是    (寫出所有真命題的序號). 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列為真命題的是(  )
A.若m⊥α,n⊥β,m⊥n,則α⊥β
B.若α⊥β,α∩β=m,m⊥n,則n⊥β
C.若α⊥β,m⊥α,n∥β,則m⊥n
D.若α∥β,m⊥α,n∥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a,b是兩條直線,α,β是兩個平面,則下列4組條件中所有能推得a⊥b的條件是________(填序號).
①a?α,b∥β,α⊥β;②a⊥α,b⊥β,α⊥β;
③a?α,b⊥β,α∥β;④a⊥α,b∥β,α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知α,β是兩個不同的平面,下列四個條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
其中是平面α∥平面β的充分條件的為________(填上所有符號要求的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出四個命題:
①平行于同一平面的兩個不重合的平面平行;
②平行于同一直線的兩個不重合的平面平行;
③垂直于同一平面的兩個不重合的平面平行;
④垂直于同一直線的兩個不重合的平面平行;
其中真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在四邊形A-BCD中,ADBCADAB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A­BCD,則在三棱錐ABCD中,下列命題正確的是(  ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長為2,銳角為的菱形沿較短對角線折成二面角,點分別為的中點,給出下列四個命題:
①;②與異面直線、都垂直;③當二面角是直二面角時,=;④垂直于截面.
其中正確的是              (將正確命題的序號全填上).

查看答案和解析>>

同步練習(xí)冊答案