下列函數(shù)是偶函數(shù)的是(  )
A、y=x
B、y=x 
1
2
C、y=x2,x∈[0,1]
D、y=2x2-3
考點(diǎn):函數(shù)奇偶性的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答: 解:y=x是奇函數(shù),不滿(mǎn)足條件,
y=x 
1
2
為非奇非偶函數(shù),不滿(mǎn)足條件,
函數(shù)定義域關(guān)于原點(diǎn)不對(duì)稱(chēng),為非奇非偶函數(shù),不滿(mǎn)足條件,
y=2x2-3為偶函數(shù),滿(mǎn)足條件.
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,要求熟練掌握常見(jiàn)函數(shù)的奇偶性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)在(0,+∞)上為增函數(shù),且在其定義域內(nèi)是偶函數(shù),則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果AB>0,BC>0,那么直線Ax-By-C=0經(jīng)過(guò)的象限是( 。
A、第一、二、三象限
B、第二、三、四象限
C、第一、三、四象限
D、第一、二、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
1+x
1-x
,x1,x2∈(-1,1).
(1)求證:f(x1)+f(x2)=f(
x1+x2
1+x1x2
);
(2)若a,b∈(-1,1),且f(
a+b
1+ab
)=1,f(-b)=
1
2
,求f(a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα,cosα是方程4x2+2
6
x+m=0的兩實(shí)根,求
(1)sinα-cosα的值;   
(2)sin3α+cos3α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4x,x∈[1,5),則此函數(shù)的值域?yàn)椋ā 。?/div>
A、[-4,+∞)
B、[-3,5)
C、[-4,5]
D、[-4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
f(x+3),x<6
log
1
2
x,x≥6
,則f(-1)的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3-bx+2,且f(-5)=17,則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),橢圓C過(guò)點(diǎn)(-
3
,1)
且與拋物線y2=-8x有一個(gè)公共的焦點(diǎn).
(1)求橢圓C方程;
(2)斜率為k的直線l過(guò)右焦點(diǎn)F2,且與橢圓交于A,B兩點(diǎn),求弦AB的長(zhǎng);
(3)P為直線x=3上的一點(diǎn),在第(2)題的條件下,若△ABP為等邊三角形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案