【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O為極點,x正半軸為極軸的極坐標系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.

【答案】
(1)解:曲線C的參數(shù)方程為 (α為參數(shù)),

x,y平方相加可得:x2+y2=2,①


(2)解:直線l方程為 ρsin( ﹣θ)+1=0化為普通方程為:x﹣y+1=0,②

由②得:y=x+1,③

把③帶入①得:2x2+2x﹣1=0,

∴|AB|= |x1﹣x2|

=

=

=


【解析】(1)把參數(shù)方程中的x,y平方相加即可得普通方程;(2)把直線l方程為 ρsin( ﹣θ)+1=0化為普通方程為:x﹣y+1=0,然后根據(jù)弦長公式計算即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】求以圓C1x2y212x2y130和圓C2x2y212x16y250的公共弦為直徑的圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題函數(shù)內恰有一個零點;命題函數(shù)上是減函數(shù),若為真命題,則實數(shù)的取值范圍是___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2011年,國際數(shù)學協(xié)會正式宣布,將每年的3月14日設為國際數(shù)學節(jié),來源則是中國古代數(shù)學家祖沖之的圓周率.祖沖之,在世界數(shù)學史上第一次將圓周率(π)值計算到小數(shù)點后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項是“31415926”中連續(xù)的三個數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項是“31415926”中的三個數(shù),且a3=b3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)cn= ,求c1+c2+c3+…+c .(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時角A,B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)過點 ,且離心率e為
(1)求橢圓E的方程;
(2)設直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x2與g(x)=(x﹣2)2 ﹣m的圖象上存在關于(1,0)對稱的點,則實數(shù)m的取值范圍是(
A.(﹣∞,1﹣ln2)
B.(﹣∞,1﹣ln2]
C.(1﹣ln2,+∞)
D.[1﹣ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次試驗中,有兩個試驗數(shù)據(jù),統(tǒng)計的結果如下面的表格1.

(1)在給出的坐標系中畫出的散點圖; 并判斷正負相關;

(2)填寫表格2,然后根據(jù)表格2的內容和公式求出的回歸直線方程,并估計當10的值是多少?(公式:

1

2

3

4

5

2

3

4

4

5

表1

表格2

序號

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個單位后,得到f(x)的圖象,則(
A.f(x)=﹣sin2x
B.f(x)的圖象關于x=﹣ 對稱
C.f( )=
D.f(x)的圖象關于( ,0)對稱

查看答案和解析>>

同步練習冊答案