(本題滿分14分)在直角坐標(biāo)系xOy中,橢圓C1的左、右焦點(diǎn)分別為F1、F2.F2也是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且
(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A、B兩點(diǎn),若·=0,求直線l的方程.
解:(Ⅰ)由:.設(shè),上,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184334699522.gif" style="vertical-align:middle;" />,所以,得,.M在上,且橢圓的半焦距,于是,消去并整理得,解得不合題意,舍去).故橢圓的方程為.(6分)
(Ⅱ)由知四邊形是平行四邊形,其中心為坐標(biāo)原點(diǎn)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184334995426.gif" style="vertical-align:middle;" />,所以的斜率相同,故的斜率
設(shè)的方程為.由消去并化簡(jiǎn)得
設(shè),,,.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823184335448350.gif" style="vertical-align:middle;" />,所以

.所以
此時(shí),
故所求直線的方程為,或.(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓,則當(dāng)在此橢圓上存在不同兩點(diǎn)關(guān)于直線對(duì)稱時(shí)的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知圓C: 
(1)若平面上有兩點(diǎn)A(1 , 0),B(-1 , 0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求使 取得最小值時(shí)點(diǎn)P的坐標(biāo).   
(2) 若軸上的動(dòng)點(diǎn),分別切圓兩點(diǎn)
①若,求直線的方程;
②求證:直線恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線(a0)與雙曲線相交于點(diǎn)A,B. 已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B在第三象限內(nèi),且△AOB的面積為3(O為坐標(biāo)原點(diǎn)).
(1)求實(shí)數(shù)a,b,k的值;
(2)過拋物線上點(diǎn)A作直線AC∥x軸,交拋物線于另一點(diǎn)C,求所有滿足△EOC∽△AOB的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)如圖所示,已知橢圓和拋物線有公共焦點(diǎn), 的中心和的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)的直線與拋物線分別相交于兩點(diǎn)
(1)寫出拋物線的標(biāo)準(zhǔn)方程;
(2)若,求直線的方程;
(3)若坐標(biāo)原點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上,直線與橢圓有公共點(diǎn),求橢圓的長(zhǎng)軸長(zhǎng)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
已知拋物線與直線相切于點(diǎn)A(1,1)。
(1)求的解析式;
(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、過點(diǎn)作傾斜角為的直線與曲線交于點(diǎn),求最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線與直線無交點(diǎn),則離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
已知橢圓C:(常數(shù)),P是曲線C上的動(dòng)點(diǎn),M是曲線C的右
頂點(diǎn),定點(diǎn)A的坐標(biāo)為(2,0).
(1)若M與A重合,求曲線C的焦點(diǎn)坐標(biāo).
(2)若,求|PA|的最大值與最小值.
(3)若|PA|最小值為|MA|,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案