16.若數(shù)列{an}滿足:a1=1,an+1=ran+r(n∈N*,實(shí)數(shù)r是非零常數(shù)),則“r=1”是“數(shù)列{an}是等差數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)等差數(shù)列的性質(zhì),分別證明充分性和必要性,從而得到答案.

解答 解:當(dāng)r=1時(shí),等式an+1=r•an+r化為an+1=an+1,即an+1-an=1(n∈N*).
所以,數(shù)列{an}是首項(xiàng)a1=1,公差為1的等差數(shù)列;
“r=1”是“數(shù)列{an}成等差數(shù)列”的充分條件,
當(dāng)r不等于1時(shí),
由an+1=ran+r=$\frac{{r}^{2}}{r-1}$-$\frac{r}{r-1}$,得an+1+$\frac{r}{r-1}$=r(an+$\frac{r}{r-1}$)
所以,數(shù)列{an+$\frac{r}{r-1}$}是首項(xiàng)為$\frac{2r}{r-1}$,公比為r的等比數(shù)列
所以,an+$\frac{r}{r-1}$=$\frac{2r}{r-1}$rn-1,
當(dāng)r=$\frac{1}{2}$時(shí),an=1.{an}是首項(xiàng)為1,公差為0的等差數(shù)列.
因此,“r=1”不是“數(shù)列{an}成等差數(shù)列”的必要條件.
綜上可知,“r=1”是“數(shù)列{an}成等差數(shù)列”的充分但不必要條件.
故選A.

點(diǎn)評(píng) 本題考查了必要條件、充分條件及充要條件,解答的關(guān)鍵是判斷必要性,也是該題的難點(diǎn),考查了由遞推式求數(shù)列的通項(xiàng)公式,對(duì)于an+1=pan+q型的遞推式,一般都可轉(zhuǎn)化成一個(gè)新的等比數(shù)列.此題是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosC=$\frac{2a-c}{2b}$.
(1)求角B的大小;
(2)若BD為AC邊上的中線,cosA=$\frac{1}{7}$,BD=$\frac{{\sqrt{129}}}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{1}{3}$,則|$\overrightarrow{OA}$|的取值范圍( 。
A.$(0,\frac{{\sqrt{10}}}{3}]$B.$(\frac{{\sqrt{10}}}{3},\frac{{\sqrt{17}}}{3}]$C.$(\frac{{\sqrt{10}}}{3},\sqrt{2}]$D.$(\frac{{\sqrt{17}}}{3},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ex+4x-3的零點(diǎn)為x0,則x0所在的區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.近日,某公司對(duì)其生產(chǎn)的一款產(chǎn)品進(jìn)行促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P(單位:萬件)與促銷費(fèi)用x(單位:萬元)滿足函數(shù)關(guān)系:p=3-$\frac{2}{x+1}$(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品件數(shù)為P(單位:萬件)時(shí),還需投入成本10+2P(單位:萬元)(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+$\frac{30}{p}$)元/件,假定生產(chǎn)量與銷售量相等.
(Ⅰ)將該產(chǎn)品的利潤(rùn)y(單位:萬元)表示為促銷費(fèi)用x(單位:萬元)的函數(shù);
(Ⅱ)促銷費(fèi)用x(單位:萬元)是多少時(shí),該產(chǎn)品的利潤(rùn)y(單位:萬元)取最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.tan$\frac{2π}{3}$=( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果函數(shù)f(x)在區(qū)域D上滿足:?a,b,c∈D,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱f(x)為“區(qū)域D上的三角形函數(shù)”.已知函數(shù)f(x)=kx+2是“[1,4]上的三角形函數(shù)”,則實(shí)數(shù)k的取值范圍是(-$\frac{2}{7}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.經(jīng)過市場(chǎng)調(diào)查,某門市部的一種小商品在過去的20天內(nèi)的銷售量(件)與價(jià)格(元)均為時(shí)間t (天)的函數(shù),且日銷售量近似滿足g(t)=80-2t (件),而日銷售量?jī)r(jià)格近似滿足函數(shù)f(t),且f(t)的圖象為如圖所示的兩線段AB,BC.
(1)直接寫出f(t)的解析式
(2)求出該種商品的日銷售額y與時(shí)間t(0≤t≤20)的函數(shù)表達(dá)式;
(3)求該種商品的日銷售額y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b是正數(shù),且a≠b,比較a3+b3與a2b+ab2的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案