精英家教網 > 高中數學 > 題目詳情
用函數單調性的定義證明函數y=x2+2x在x∈[0,+∞)是單調遞增函數.
證明:設任意的x1,x2∈[0,+∞),且x1<x2,
所以有f(x1)-f(x2)-f(x2)=x12+2x1-x22-2x2=(x1+x2)(x1-x2)+2(x1-x2)=(x1-x2)(x1+x2+2),
因為0<x1<x2,
所以x1-x2<0,x1+x2+2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
故函數y=x2+2x在x∈[0,+∞)是單調遞增函數.
練習冊系列答案
相關習題

科目:高中數學 來源:2014屆云南省高一上學期期中數學試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數是定義在上的奇函數,且,

(1)確定函數的解析式;

(2)用定義證明上是增函數;

(3)解不等式.

【解析】第一問利用函數的奇函數性質可知f(0)=0

結合條件,解得函數解析式

第二問中,利用函數單調性的定義,作差變形,定號,證明。

第三問中,結合第二問中的單調性,可知要是原式有意義的利用變量大,則函數值大的關系得到結論。

 

查看答案和解析>>

同步練習冊答案