已知(x2+
1
x
)n
的二項展開式的各項系數(shù)和為32,則二項展開式中x4的系數(shù)為( 。
A、5B、10C、20D、40
分析:先對二項式中的x賦值1求出展開式的系數(shù)和,列出方程求出n的值,代入二項式;再利用二項展開式的通項公式求出展開式的通項,令通項中的x的指數(shù)為4,求出r,將r的值代入通項求出二項展開式中x4的系數(shù).
解答:解:在(x2+
1
x
)
n
中,令x=1得到二項展開式的各項系數(shù)和為2n
∴2n=32
∴n=5
(x2+
1
x
)
n
=(x2+
1
x
)
5

其展開式的通項為Tr+1=C5rx10-3r
令10-3r=4得r=2
∴二項展開式中x4的系數(shù)為C52=10
故選B.
點評:求二項展開式的系數(shù)和常用的方法是給二項式中的x賦值;解決二項展開式的特定項問題常用的方法是利用二項展開式的通項公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2-
1
x
)n
展開式中的二項式系數(shù)的和比(3a+2b)7展開式的二項式系數(shù)的和大128,求(x2-
1
x
)n
展開式中的系數(shù)最大的項和系數(shù)最小的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2+
1
x
)n
的二項展開式的各項系數(shù)和為64,則n為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2-
1
x
)n
的展開式中第3項與第5項的系數(shù)之比為
3
14

(1)求n的值; 
(2)求展開式中的常數(shù)項; 
(3)求二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
2
+
1
x
)n
各項展開式的二項式系數(shù)之和為256.
(Ⅰ)求n;
(Ⅱ)求展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2-
1
x
)n
的展開式中第一項與第三項的系數(shù)之比為
1
45
,則展開式中常數(shù)項為(  )

查看答案和解析>>

同步練習(xí)冊答案