3.如圖求由y2=4x與直線y=2x-4所圍成圖形的面積.

分析 先求出曲線y2=4x 和直線y=2x-4的交點坐標,從而得到積分的上下限,然后利用定積分表示出圖形面積,最后根據(jù)定積分的定義求出即可.

解答 解:y2=4x與直線y=2x-4,解得曲線y2=4x 和直線y=2x-4的交點坐標為:A(1,-2),B(4,4)
選擇y為積分變量
∴由曲線y2=4x 和直線y=2x-4所圍成的圖形的面積
S=${∫}_{-2}^{4}$($\frac{1}{2}y+2-\frac{{y}^{2}}{4}$)dy=($\frac{1}{4}$y2+2y-$\frac{1}{12}$y3)|-24=9
故由y2=4x與直線y=2x-4所圍成圖形的面積9.

點評 本題主要考查了定積分在求面積中的應用,以及會利用定積分求圖形面積的能力.應用定積分求平面圖形面積時,積分變量的選取是至關(guān)重要的,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.某公司從大學招收畢業(yè)生,經(jīng)過綜合測試,錄用了14名男生和6名女生,這20名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分).公司規(guī)定:成績在180分以上者到甲部門工作,180分以下者到乙部門工作,另外只有成績高于180分的男生才能擔任助理工作.
(1)分別求甲、乙兩部門畢業(yè)生測試成績的中位數(shù)和平均數(shù)
(2)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取8人,再從這8人中選3人,那么至少有一人是甲部門人選的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\sqrt{a{x}^{2}+bx}$(a∈R,b>0)的定義域和值域相同,則a的值是-4或0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.△ABC中,若4sinA+2cosB=4,$\frac{1}{2}sinB+cosA=\frac{{\sqrt{3}}}{2}$,則角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.實數(shù)a,b滿足2a+2b=1,則函數(shù)f(x)=x2-2(a+b)x+2在[-2,2]上( 。
A.單調(diào)遞增B.單調(diào)遞減C.先增后減D.先減后增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若f(x)=$\left\{\begin{array}{l}{x-2,x≥10}\\{f(x+6),x<10}\end{array}\right.$則f(5)的值( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關(guān)?
購買意愿強購買意愿弱合計
20-40歲
大于40歲
合計
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性500人,其中有50人患色盲,調(diào)查的500個女性中10人患色盲,
(1)根據(jù)以上的數(shù)據(jù)建立一個2*2的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.001的前提下,認為“性別與患色盲有關(guān)系”?說明你的理由.(注:P(K2≥10.828)=0.001)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若正數(shù)m,n滿足m+n+3=mn,不等式(m+n)x2+2x+mn-13≥0恒成立,則實數(shù)x的取值范圍是(  )
A.$({-∞,-1}]∪[{\frac{2}{3},+∞})$B.$({-∞,-1}]∪[{\frac{1}{2},+∞})$C.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{3},+∞})$D.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{6},+∞})$

查看答案和解析>>

同步練習冊答案