已知函數(shù)a為常數(shù))在x=1處的切線的斜率為1

(1)求實(shí)數(shù)a的值,并求函數(shù)的單調(diào)區(qū)間,

(2)若不等式k在區(qū)間上恒成立,其中e為自然對數(shù)的底數(shù),求實(shí)數(shù)k的取值范圍.

 

【答案】

(1)的單調(diào)遞增區(qū)間是的單調(diào)遞減區(qū)間是;(2).

【解析】

試題分析:(1)先求,利用在處的導(dǎo)數(shù)就是此點(diǎn)處切線斜率,即,算出a,然后確定函數(shù)的定義域,利用的區(qū)間為函數(shù)的增區(qū)間,的區(qū)間為函數(shù)的減區(qū)間;(2)將不等式恒成立轉(zhuǎn)化成,利用(1)的單調(diào)性,判斷出上的最小值為,所以分別求出,然后比較得出最小值.,此題考察利用導(dǎo)數(shù)研究函數(shù)性質(zhì),邏輯推理要嚴(yán)謹(jǐn),此題屬于中檔題.

試題解析:(1)

由題知:,解得,.

,定義域

,由,得,

當(dāng)時(shí),,此時(shí),,上單調(diào)遞減.

當(dāng)時(shí),,此時(shí),,上單調(diào)遞增.

綜上:的單調(diào)遞增區(qū)間是,的單調(diào)遞減區(qū)間是.

(2)(1)在上單調(diào)遞增,在上單調(diào)遞減.

上的最小值為

上的最小值為

上恒成立,則

考點(diǎn):1.求函數(shù)的導(dǎo)數(shù);2.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和最值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年寧夏高考數(shù)學(xué)仿真模擬試卷3(文科)(解析版) 題型:解答題

已知函數(shù)( a為常數(shù)、a∈R),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=1時(shí),判斷函數(shù)g(x)的零點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市普陀區(qū)曹楊二中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知函數(shù)(a為常數(shù))的圖象經(jīng)過點(diǎn)(1,3).
(1)求實(shí)數(shù)a的值;
(2)寫出函數(shù)f(x)在[a,a+1]上的單調(diào)區(qū)間,并求函數(shù)f(x)在[a,a+1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省皖中地區(qū)示范高中高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)( a為常數(shù)、a∈R),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=1時(shí),判斷函數(shù)g(x)的零點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年青海省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

已知函數(shù)(a為常數(shù))是R上的奇函數(shù),函數(shù)

是區(qū)間[-1,1]上的減函數(shù).

(1)求a的值;

(2)若上恒成立,求t的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年貴州省遵義市高三考前最后一次模擬測試數(shù)學(xué)(理)試題 題型:解答題

(本小題滿分12分)

已知函數(shù)其中a為常數(shù),且

(Ⅰ)當(dāng)時(shí),求(e=2.718 28…)上的值域;

(Ⅱ)若對任意恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案