為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn):把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本y(萬(wàn)元)與處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:數(shù)學(xué)公式,且每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品.
(Ⅰ)當(dāng)x∈[30,50]時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?
(Ⅱ) 當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.

解:(Ⅰ)當(dāng)x∈[30,50]時(shí),設(shè)該工廠獲利為S,則S=20x-(x2-40x+1600)=-(x-30)2-700
所以當(dāng)x∈[30,50]時(shí),S<0,因此,該工廠不會(huì)獲利,所以國(guó)家至少需要補(bǔ)貼700萬(wàn)元,才能使工廠不虧損
(Ⅱ)由題意可知,二氧化碳的每噸平均處理成本為:
①當(dāng)x∈[10,30)時(shí),P(x)=,∴P′(x)==
∴x∈[10,20)時(shí),P′(x)<0,P(x)為減函數(shù);x∈(20,30)時(shí),P′(x)>0,P(x)為增函數(shù),
∴x=20時(shí),P(x)取得最小值,即P(20)=48;
②當(dāng)x∈[30,50]時(shí),P(x)=-40≥-40=40
當(dāng)且僅當(dāng)x=,即x=40∈[30,50]時(shí),P(x)取得最小值P(40)=40
∵48>40,
∴當(dāng)處理量為40噸時(shí),每噸的平均處理成本最少.
分析:(Ⅰ)利用每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品,及處理成本y(萬(wàn)元)與處理量x(噸)之間的函數(shù)關(guān)系,可得利潤(rùn)函數(shù),利用配方法,即可求得結(jié)論;
(Ⅱ)求得二氧化碳的每噸平均處理成本函數(shù)是分段函數(shù),再分段求出函數(shù)的最值,比較其大小,即可求得結(jié)論.
點(diǎn)評(píng):本題考查函數(shù)模型的構(gòu)建,考查函數(shù)最值的求解,正確運(yùn)用求函數(shù)最值的方法是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn):把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本y(萬(wàn)元)與處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=
1
25
x3+640,x∈[10,30)
x2-40x+1600,x∈[30,50]
,且每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品.
(Ⅰ)當(dāng)x∈[30,50]時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?
(Ⅱ)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高三第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn): 把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本(萬(wàn)元)與處理量(噸)之間的函數(shù)關(guān)系可近似地表示為: , 且每處理一噸二氧化碳可得價(jià)值為萬(wàn)元的某種化工產(chǎn)品.

(Ⅰ)當(dāng) 時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?

(Ⅱ) 當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都高新區(qū)高三9月統(tǒng)一檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn): 把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本(萬(wàn)元)與處理量(噸)之間的函數(shù)關(guān)系可近似地表示為: , 且每處理一噸二氧化碳可得價(jià)值為萬(wàn)元的某種化工產(chǎn)品.

(Ⅰ)當(dāng) 時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?  

(Ⅱ) 當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省襄陽(yáng)市棗陽(yáng)市白水高中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn):把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本y(萬(wàn)元)與處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:,且每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品.
(Ⅰ)當(dāng)x∈[30,50]時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?
(Ⅱ) 當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.

查看答案和解析>>

同步練習(xí)冊(cè)答案