4.經(jīng)過圓x2+y2=2x的圓心且與直線y=2x平行的直線方程為2x-y-2=0.

分析 求出圓的圓心坐標(biāo),直線斜率,即可求解直線方程.

解答 解:圓x2+y2=2x的圓心(1,0),直線的斜率為:2,
經(jīng)過圓x2+y2=2x的圓心且與直線y=2x平行的直線方程為:y=2(x-1),即2x-y-2=0.
故答案為:2x-y-2=0.

點(diǎn)評 本題考查直線與圓的位置關(guān)系的應(yīng)用,直線方程的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知全集U=R,集合A=$\{x|\frac{x-1}{x-4}≤0\}$,集合B為函數(shù)g(x)=3x+a的值域.
(1)若a=2,求A∪B和A∩(CUB);
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖、用四種不同的顏色給標(biāo)有字母的6個區(qū)域染色,要求相鄰的區(qū)域不能染同色,則不同的染色方法有( 。
A.720種B.240種C.120種D.96種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列條件能說明一個棱錐是正棱錐的是( 。
A.各側(cè)面都是等腰三角形B.側(cè)棱長度相等且底面是菱形
C.所有棱長都相等D.底面是三角形且三條側(cè)棱兩兩垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)O是原點(diǎn),若A點(diǎn)到準(zhǔn)線的距離為3,則△AOB的面積為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.四面體ABCD的四個頂點(diǎn)都在某個球O的表面上,△BCD是邊長為3$\sqrt{3}$的等邊三角形,當(dāng)A在球O表面上運(yùn)動時,四面體ABCD所能達(dá)到的最大體積為$\frac{81\sqrt{3}}{4}$,則四面體OBCD的體積為(  )
A.$\frac{81\sqrt{3}}{8}$B.$\frac{27\sqrt{3}}{4}$C.9$\sqrt{3}$D.$\frac{27\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=$\frac{{\sqrt{x({4-x})}}}{x-1}$的定義域( 。
A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知△ABC中,a2=b(b+c),B=15°,則角C=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若|f(x)|≥ax-1恒成立,則a的取值范圍[-4,0].

查看答案和解析>>

同步練習(xí)冊答案