【題目】地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖. 根據(jù)所給信息,正確的統(tǒng)計結(jié)論是(

A.截止到2015年中國累計裝機容量達到峰值

B.10年來全球新增裝機容量連年攀升

C.10年來中國新增裝機容量平均超過

D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過

【答案】D

【解析】

先列表分析近10年全球風力發(fā)電新增裝機容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.

年份

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

累計裝機容量

158.1

197.2

237.8

282.9

318.7

370.5

434.3

489.2

542.7

594.1

新增裝機容量

39.1

40.6

45.1

35.8

51.8

63.8

54.9

53.5

51.4

中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標.將指標按照,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為絕對貧困戶,否則認定該戶為相對貧困戶;當時,認定該戶為亟待幫住戶”.工作組又對這戶家庭的受教育水平進行評測,家庭受教育水平記為良好不好兩種.

1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與受教育水平不好有關:

受教育水平良好

受教育水平不好

總計

絕對貧困戶

相對貧困戶

總計

2)上級部門為了調(diào)查這個村的特困戶分布情況,在貧困指標處于的貧困戶中,隨機選取兩戶,用表示所選兩戶中亟待幫助戶的戶數(shù),求的分布列和數(shù)學期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,的焦點為,過點的直線的斜率為,與拋物線交于兩點,拋物線在點,處的切線分別為,兩條切線的交點為

1)證明:

2)若的外接圓與拋物線有四個不同的交點,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù),且.

1)求的值,并證明處取得極值;

2)證明:在區(qū)間有唯一零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中,,,,中點,以為折痕把折起,使點到達點的位置(平面).

(Ⅰ)證明:;

(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為且滿足,當時,.

1)判斷上的單調(diào)性并加以證明;

2)若方程有實數(shù)根,則稱為函數(shù)的一個不動點,設正數(shù)為函數(shù)的一個不動點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關關系,請將(2)的結(jié)果填入空白欄,并求出關于的回歸直線方程.

查看答案和解析>>

同步練習冊答案