1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$,若a=f(${log_2}\frac{1}{3}$),b=f(${2^{\frac{1}{3}}}$),c=f(${3^{-\frac{1}{2}}}$),則( 。
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

分析 函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$在R上減函數(shù),比較三個(gè)自變量的大小,可得答案.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$在R上減函數(shù),
∵${log_2}\frac{1}{3}$∈(-∞,0),${2^{\frac{1}{3}}}$∈(1,+∞),${3^{-\frac{1}{2}}}$∈(0,1),
∴a>c>b,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的單調(diào)性,指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求滿足下列條件的圓的方程:
(1)經(jīng)過點(diǎn)P(5,1),圓心為點(diǎn)C(8,-3);
(2)求經(jīng)過A(6,5),B(0,1)兩點(diǎn),并且圓心在直線3x+10y+9=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù)未損壞餐椅數(shù)總 計(jì)
學(xué)習(xí)雷鋒精神前50150200
學(xué)習(xí)雷鋒精神后30170200
總  計(jì)80320400
(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
(2)請(qǐng)說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x3-3ax-1,(a≠0).
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有且只有一個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=ax3+2x2-1有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值集合( 。
A.{-1,0,1}B.{0,$\frac{4\sqrt{6}}{9}$}C.{0,$\frac{2\sqrt{3}}{3}$}D.{-$\frac{4\sqrt{6}}{9}$,0,$\frac{4\sqrt{6}}{9}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x-alnx+$\frac{x}$在x=1處取得極值.
(Ⅰ)求a與b滿足的關(guān)系式;
(Ⅱ)若a>3,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若a>3,函數(shù)g(x)=a2x2+3,若存在m1,m2∈[$\frac{1}{2}$,2],使得|f(m1)-g(m2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC的AB邊中點(diǎn)為D,AC=1,BC=2,則$\overrightarrow{AB}$•$\overrightarrow{CD}$的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某農(nóng)場(chǎng)有一塊以O(shè)為圓心,R(R為常數(shù),單位為米)為半徑的半圓形(如圖)種植地,農(nóng)場(chǎng)主計(jì)劃對(duì)其合理利用,其中扇形AOB區(qū)域用于種植作物甲出售,△BOC區(qū)域用于種植作物乙出售,其余區(qū)域用于種植作物丙不出售,已知種植作物甲的利潤(rùn)是40元/平方米;種植作物乙的利潤(rùn)是80元/平方米;種植作物丙的成本是20元/平方米.
(1)設(shè)∠AOB=θ(單位:弧度,0<θ<π),用θ表示弓形BCD的面積f(θ);
(2)求總利潤(rùn)最大時(shí)cosθ的大小,并計(jì)算此時(shí)作物乙的種植面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合A={x|x2-4x+3=0},B={x|x2-5x+4=0},集合A∪B為( 。
A.{1}B.{1,3}C.{1,4}D.{1,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案