如圖,四棱錐的底面是邊長為的菱

形,,平面,.

(1)求直線PB與平面PDC所成的角的正切值;

(2)求二面角A-PB-D的大小.

 

解析:(1)取DC的中點(diǎn)E.

∵ABCD是邊長為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角.

∵BE=,PE=,∴==.

(2)連接AC、BD交于點(diǎn)O,因?yàn)锳BCD是菱形,所以AO⊥BD.

平面, AO平面,

 PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.∴=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年朝陽區(qū)二模文)(13分)

  如圖,四棱錐的底面是矩形,底面邊的中點(diǎn),與平面所成的角為,且,.

(Ⅰ) 求證:平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年山東實(shí)驗(yàn)中學(xué)診斷三理)(13分)如圖:四棱錐的底面是提醒,腰,平分且與垂直,側(cè)面都垂直于底面,平面與底面成60°角

(1)求證:

(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第八次月考文科數(shù)學(xué)試卷 題型:解答題

如圖,四棱錐的底面是平行四邊形,平面,,,

點(diǎn)上的點(diǎn),且.     

(Ⅰ)求證:;

(Ⅱ)求的值,使平面;

(Ⅲ)當(dāng)時(shí),求三棱錐與四棱錐的體積之比.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期摸底理科數(shù)學(xué) 題型:解答題

((本小題滿分14分)如圖,四棱錐的底面是正方形,側(cè)棱底面,,、分別是棱、的中點(diǎn).

   (1)求證:;   (2) 求直線與平面所成的角的正切值

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(本小題滿分12 分)

如圖,四棱錐的底面是邊長為的菱形,

平面,,的中點(diǎn),O為底面對(duì)角線的交點(diǎn);

(1)求證:平面平面; 

(2)求二面角的正切值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案