某校同學設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點的兩條弦,且其焦點,,點為軸上一點,記,其中為銳角.
(1)求拋物線方程;
(2)求證:.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于、兩點,若(為坐標原點),試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足且=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)如圖,某隧道設(shè)計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓。
(1)若最大拱高h為6 m,則隧道設(shè)計的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應如何設(shè)計拱高h和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及的值,使總造價最少。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓及定點,點是圓上的動點,點在上,且滿足,點的軌跡為曲線。
(1)求曲線的方程;
(2)若點關(guān)于直線的對稱點在曲線上,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓錐曲線的兩個焦點坐標是,且離心率為;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線的軸左邊部分,若直線與曲線相交于兩點,求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點,使,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,離心率,右焦點為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的上頂點為,在橢圓上是否存在點,使得向量與共線?若存在,求直線的方程;若不存在,簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com