7.已知數(shù)列{an},滿足a1=1,an+1=2an+3,則a5等于( 。
A.64B.63C.32D.61

分析 兩邊同加3,可得an+1+3=2(an+3),從而{an+3}是以a1+1=4為首項(xiàng),q=2為公比的等比數(shù)列,故可求.

解答 解:由題意an+1=2an+3,可得an+1+3=2(an+3)
∴{an+3}是以a1+3=4為首項(xiàng),q=2為公比的等比數(shù)列
an+3=4•2n-1=2n+1 故an=2n+1-3,
a5=61.
故選:D.

點(diǎn)評(píng) 本題以數(shù)列遞推式為載體,考查等比數(shù)列,關(guān)鍵是運(yùn)用整體思想,把{an+3}看成數(shù)列的通項(xiàng),進(jìn)行求解,也可以看成是等價(jià)轉(zhuǎn)化成等比數(shù)列的一種解題方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)公比為q(q≠1)的等比數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=qn+k,那么k等于( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知在△ABC中,c=10,A=45°,C=30°,則a的值為( 。
A.10$\sqrt{2}$B.10$\sqrt{3}$C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若全集 U={x|-2≤x≤2},則集合 A={x|-2≤x≤0}的補(bǔ)集∁U A 為( 。
A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,2),($\overrightarrow{a}$+λ$\overrightarrow$)⊥$\overrightarrow$,則實(shí)數(shù)λ=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=log2g(x)+(k-1)x.
(1)若g(log2x)=x+1,且f(x)為偶函數(shù),求實(shí)數(shù)k的值;
(2)當(dāng)k=1,g(x)=ax2+(a+1)x+a時(shí),若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{1-{{log}_2}x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(0,2)C.(2,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合M={x∈R|y=lg(4-x2)},則M∩N*=( 。
A.(-1,1]B.{1}C.(0,2)D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法錯(cuò)誤的是( 。
A.命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
B.如果命題“?p”與命題“p∨q”都是真命題,則命題q一定是真命題
C.若命題:?x0∈R,x02-x0+1<0,則?p:?x∈R,x2-x+1≥0
D.“sinθ=$\frac{1}{2}$”是“θ=$\frac{π}{6}$”的充分必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案