設(shè)橢圓的左、右焦點分別、,點是橢圓短軸的一個端點,且焦距為6,的周長為16.
(I)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截的線段的中點坐標(biāo).

(1)(2)

解析試題分析:(1)利用橢圓的標(biāo)準(zhǔn)方程及其參數(shù)a、b、c的關(guān)系即可得出;
(2)把直線與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系就線段的中點坐標(biāo)公式即可得出.
試題解析:(1)設(shè)橢圓的半焦距為,則由題設(shè)得,         3分
解得,所以,             5分
故所求的方程為.                    6分
(2)過點且斜率為的直線方程為,         8分
將之代入的方程,得,即.               10分
設(shè)直線與橢圓有兩個交點,
因為,所以線段中點的橫坐標(biāo)為
縱坐標(biāo)為 .                        11分
故所求線段的中點坐標(biāo)為.                   12分.
考點:1.直線與圓錐曲線的關(guān)系;2.橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè):的準(zhǔn)線與軸交于點,焦點為;橢圓為焦點,離心率.設(shè)的一個交點.

(1)當(dāng)時,求橢圓的方程.
(2)在(1)的條件下,直線的右焦點,與交于兩點,且等于的周長,求的方程.
(3)求所有正實數(shù),使得的邊長是連續(xù)正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點為,點為拋物線上的一點,其縱坐標(biāo)為,.
(1)求拋物線的方程;
(2)設(shè)為拋物線上不同于的兩點,且,過兩點分別作拋物線的切線,記兩切線的交點為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的方程為,離心率為,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓與直線相切于點,與正半軸交于點,與直線在第一象限的交點為.點為圓上任一點,且滿足,動點的軌跡記為曲線

(1)求圓的方程及曲線的方程;
(2)若兩條直線分別交曲線于點、、,求四邊形面積的最大值,并求此時的的值.
(3)證明:曲線為橢圓,并求橢圓的焦點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:上,且橢圓的離心率e =

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的內(nèi)切圓與三邊的切點分別為,已知,內(nèi)切圓圓心,設(shè)點A的軌跡為R.

(1)求R的方程;
(2)過點C的動直線m交曲線R于不同的兩點M,N,問在x軸上是否存在一定點Q(Q不與C重合),使恒成立,若求出Q點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點的直線與橢圓交于點(點在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點,平行于的直線與橢圓相交于兩點.判斷直線是否關(guān)于直線對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中點在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.

(1)求橢圓C的方程;
(2)己知點P(2,3),Q(2,-3)在橢圓上,點A、B是橢圓上不同的兩個動點,且滿足APQ=BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案