4.已知盒中裝有3個(gè)紅球,2個(gè)白球,5個(gè)黑球,它們除顏色外完全相同,小明需要一個(gè)紅球,若他每次從中任取一個(gè)球且取出的球不再放回,則他在第一次拿到白球的條件下,第二次拿到紅球的概率為$\frac{1}{3}$.

分析 利用條件概率公式,設(shè)“第一次拿到白球”為事件A,“第二次拿到紅球”為事件B,分別求出P(A),P(AB),根據(jù)條件概率公式求得即可.

解答 解:設(shè)“第一次拿到白球”為事件A,“第二次拿到紅球”為事件B,
則$P(A)=\frac{2}{10}=\frac{1}{5},P(AB)=\frac{2}{10}•\frac{3}{9}=\frac{1}{15}$,故$P(B\left|A\right.)=\frac{P(AB)}{P(A)}=\frac{1}{3}$.
故答案為$\frac{1}{3}$.

點(diǎn)評(píng) 本題主要考查條件概率的求法,熟練掌握條件概率的概率公式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中正確的有( 。
①命題?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“對(duì)?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點(diǎn)的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進(jìn)制數(shù)66化為二進(jìn)制數(shù)是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$,若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(2)已知x>1,求f(x)=x+$\frac{1}{x-1}$最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.給出下列程序,輸入x=2,y=3,則輸出( 。
A.2,3B.2,2C.3,3D.3,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)f(x)=2x+x-5的零點(diǎn)在區(qū)間(a,b)(a,b是整數(shù)且b-a=1)內(nèi),則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,∠BAC=120°,AB=2,AC=1,P是BC邊上的一點(diǎn),則${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范圍是( 。
A.$[\frac{1}{4},3]$B.$[\frac{1}{2},5]$C.$[\frac{13}{4},5]$D.$[-\frac{27}{4},-5]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若logx9=2,則x的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知F1,F(xiàn)2是橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的焦點(diǎn),P在橢圓上,且$∠{F_1}P{F_2}=\frac{π}{3}$,則點(diǎn)P到x軸的距離為$\frac{5\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}(n∈N*)的前n項(xiàng)和為Sn,且a3=5,S3=9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)若等比數(shù)列{cn}(n∈N*)中,c2=a2,c3=a5,求數(shù)列{cn}的前n項(xiàng)和Qn

查看答案和解析>>

同步練習(xí)冊(cè)答案