【題目】已知拋物線C的標(biāo)準(zhǔn)方程是
(Ⅰ)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)直線過已知拋物線C的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為A、B,求線段AB的長度.
【答案】(Ⅰ)焦點(diǎn)為F(,0),準(zhǔn)線方程:(Ⅱ)12
【解析】
試題分析:(1)拋物線的標(biāo)準(zhǔn)方程是,焦點(diǎn)在x軸上,開口向右,2p=6,即可求出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(2)先根據(jù)題意給出直線l的方程,代入拋物線,求出兩交點(diǎn)的橫坐標(biāo)的和,然后利用焦半徑公式求解即可
試題解析:(1)拋物線的標(biāo)準(zhǔn)方程是,焦點(diǎn)在x軸上,開口向右,,∴焦點(diǎn)為F(,0),準(zhǔn)線方程:,……………………4分
(2)∵直線過已知拋物線的焦點(diǎn)且傾斜角為45°,
∴直線的方程為,………………………………………5分
代入拋物線,化簡得………………7分
設(shè),,則,
所以
故所求的弦長為12.…………………………………………………10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱錐F—ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線().
(1)證明:直線過定點(diǎn);
(2)若直線不經(jīng)過第四象限,求的取值范圍;
(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為(為坐標(biāo)原點(diǎn)),求的最小值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別為橢圓:的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓上的點(diǎn)到、兩點(diǎn)的距離之和等于6,寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)是(1)中所得橢圓上的動點(diǎn),求線段的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)上一點(diǎn)到焦點(diǎn)的距離為.
(1)求的方程;
(2)過作直線,交于兩點(diǎn),若直線中點(diǎn)的縱坐標(biāo)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)),.
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的最大值;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù),證明:對任意,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把離心率的雙曲線稱為黃金雙曲線.給出以下幾個(gè)說法:
①雙曲線是黃金雙曲線;
②若雙曲線上一點(diǎn)到兩條漸近線的距離積等于,則該雙曲線是黃金雙曲線;
③若為左右焦點(diǎn),為左右頂點(diǎn),且,則該雙曲線是黃金雙曲線;
④.若直線經(jīng)過右焦點(diǎn)交雙曲線于兩點(diǎn),且,,則該雙曲線是黃金雙曲線;
其中正確命題的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com