【題目】已知橢圓的離心率為,拋物線的準(zhǔn)線被橢圓截得的線段長(zhǎng)為

(1)求橢圓的方程;

(2)如圖,點(diǎn)分別是橢圓的左頂點(diǎn)、左焦點(diǎn)直線與橢圓交于不同的兩點(diǎn)都在軸上方).且.證明:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】(1);(2)直線過(guò)定點(diǎn)

【解析】

(1)根據(jù)題意可得1,a2=2b2,求解即可.

(2)設(shè)直線l的方程,代入橢圓方程,利用韋達(dá)定理及直線的斜率公式將條件轉(zhuǎn)化,即可求k,m的關(guān)系式,代入直線方程即可求出定點(diǎn).

(1)由題意可知,拋物線的準(zhǔn)線方程為,又橢圓被準(zhǔn)線截得弦長(zhǎng)為

∴點(diǎn)在橢圓上,∴,① 又,∴,

,②,由①②聯(lián)立,解得,∴橢圓的標(biāo)準(zhǔn)方程為:,

(2)設(shè)直線,設(shè)

把直線代入橢圓方程,整理可得,,即

,,

,∵都在軸上方.且,∴

,即,

整理可得,∴

,整理可得,

∴直線,∴直線過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O與直線相切.

1)求圓O的方程;

2)若過(guò)點(diǎn)的直線l被圓O所截得的弦長(zhǎng)為4,求直線l的方程;

3)若過(guò)點(diǎn)作兩條斜率分別為的直線交圓OB、C兩點(diǎn),且,求證:直線BC恒過(guò)定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱臺(tái)的底面是正三角形,平面平面,.

(Ⅰ)求證:;

(Ⅱ)若和梯形的面積都等于,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比為

1)求橢圓C的方程;

2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱中,,分別是,的中點(diǎn),為棱上的點(diǎn).

證明:;

證明:;

是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為?若存在,說(shuō)明點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

5

6

8

6

2

3

3

5

6

8

9

7

1

2

2

3

4

5

6

7

8

9

8

9

5

8

1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在80分及其以上的試卷中任取2份分析學(xué)生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正項(xiàng)等差數(shù)列的前n項(xiàng)和為,已知成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前n項(xiàng)和;

3)設(shè)數(shù)列滿足求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.

(1)求的值;

(2)證明:對(duì)任意的n∈N*,等式都成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案