12.定義運算a⊕b=a2+2ab-b2,則cos$\frac{π}{6}$⊕sin$\frac{π}{6}$=$\frac{1+\sqrt{3}}{2}$.

分析 利用新定義,特殊角的三角函數(shù)值,求得要求式子的值.

解答 解:∵運算a⊕b=a2+2ab-b2,則cos$\frac{π}{6}$⊕sin$\frac{π}{6}$=${cos}^{2}\frac{π}{6}$+2cos$\frac{π}{6}$sin$\frac{π}{6}$-${sin}^{2}\frac{π}{6}$=$\frac{3}{4}$+2•$\frac{\sqrt{3}}{2}•\frac{1}{2}$-$\frac{1}{4}$=$\frac{1+\sqrt{3}}{2}$,
故答案為:$\frac{{1+\sqrt{3}}}{2}$.

點評 本題主要考查新定義,特殊角的三角函數(shù)值,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖陰影部分是由曲線y=2x2和x2+y2=3及x軸圍成的部分封閉圖形,則陰影部分的面積為( 。
A.$\frac{π}{2}-\frac{{\sqrt{3}}}{8}$B.$\frac{π}{2}-\frac{{3\sqrt{3}}}{8}$C.$\frac{3π}{2}-\frac{{\sqrt{3}}}{8}$D.$\frac{3π}{2}-\frac{{3\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知點A(-1,0),B(1,0)為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右頂點,點M在雙曲線上,△ABM為等腰三角形,且頂角為120°,則該雙曲線的標準方程為( 。
A.x2-$\frac{{y}^{2}}{4}$=1B.x2-$\frac{{y}^{2}}{3}$=1C.x2-y2=1D.x2-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.用反證法證明命題:“若a,b∈Z,ab能被5整除,則a,b中至少有一個能被5整除”,那么假設的內(nèi)容是( 。
A.a,b都能被5整除B.a,b都不能被5整除
C.a,b有一個能被5整除D.a,b有一個不能被5整除

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若關(guān)于實數(shù)x的不等式|x-5|-|x-2|>a無解,則實數(shù)a的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.與兩個相交平面的交線平行的直線和這兩個平面的位置關(guān)系是(  )
A.都平行B.都相交
C.在兩平面內(nèi)D.至少和其中一個平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點.
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點,且PM=$\frac{3\sqrt{2}}{2}$,求二面角C-EF-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若|$\frac{x}{x+1}$|>$\frac{x}{x+1}$則實數(shù)x的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.甲、乙兩臺自動車床生產(chǎn)同種標準件,ξ表示甲機床生產(chǎn)1000件產(chǎn)品中的次品數(shù),η表示乙機床生產(chǎn)1000件產(chǎn)品中的次品數(shù),經(jīng)過一段時間的測試,ξ與η的分布列分別為:
ζ0123
P0.70.10.10.1
η0123
p0.50.30.20
據(jù)此判定( 。
A.甲比乙質(zhì)量好B.乙比甲質(zhì)量好C.甲與乙質(zhì)量相同D.無法判定

查看答案和解析>>

同步練習冊答案