6.某程序框圖如圖所示,該程序運行后輸出的值是( 。
A.3B.4C.5D.6

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量k的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬執(zhí)行程序,可得
當S=0時,滿足繼續(xù)循環(huán)的條件,則S=1,k=1;
當S=1時,滿足繼續(xù)循環(huán)的條件,則S=3,k=2;
當S=2時,滿足繼續(xù)循環(huán)的條件,則S=11,k=3;
當S=7時,滿足繼續(xù)循環(huán)的條件,則S=2059,k=4;
當S=2059時,不滿足繼續(xù)循環(huán)的條件S<100,
故輸出的k值為4,
故選:B.

點評 本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.(Ι)已知:復數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復數(shù)z2的虛部為2,z1•z2是實數(shù),求z2
(Ⅱ)已知:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程是y=$\sqrt{3}x$,它的一個焦點在拋物線y2=24x的準線上,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.將圓x2+y2=1上每一點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼?倍,得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)過點$N(\sqrt{3},0)$的直線l與C的交點為A,B,與y軸交于點M,且$\overrightarrow{AM}={λ_1}\overrightarrow{AN}$,$\overrightarrow{BM}={λ_2}\overrightarrow{BN}$,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知圓C的方程為:x2+y2+2x-4y+k=0,(k∈R).
(1)求圓心C的坐標;
(2)求實數(shù)k的取值范圍;
(3)是否存在實數(shù)k,使直線l:x-2y+4=0與圓C相交于M、N兩點,且OM⊥ON(O為坐標原點)若存在,求出k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.曲線y=$\frac{1}{x}$與直線y=x及x=4所圍成的封閉圖形的面積為( 。
A.2ln2B.2-ln2C.7-2ln2D.$\frac{15}{2}$-2ln2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)已知tanα=3,計算$\frac{3sinα+cosα}{sinα-2cosα}$;
(2)若cos(α+β)=$\frac{1}{5}$,cos(α-β)=$\frac{3}{5}$,求tanα•tanβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下列命題中:
①命題p:“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定?p“?x∈R,x2-x-1≤0”;
②汽車的重量和汽車每消耗1升汽油所行駛的平均路程成正相關關系;
③命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
④概率是隨機的,在試驗前不能確定.
正確的有①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系中,點P為曲線C上任意一點,且P到定點F(1,0)的距離比到y(tǒng)軸的距離多1.
(1)求曲線C的方程;
(2)點M為曲線C上一點,過點M分別作傾斜角互補的直線MA,MB與曲線C分別交于A,B兩點,過點F且與AB垂直的直線l與曲線C交于D,E兩點,若|DE|=8,求點M的坐標.

查看答案和解析>>

同步練習冊答案