11.若點P為橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的動點,G點滿足$\overrightarrow{PG}$=2$\overrightarrow{GO}$(O是坐標(biāo)原點),則G的軌跡方程為( 。
A.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1B.$\frac{4{x}^{2}}{9}$+y2=1C.$\frac{9{x}^{2}}{4}$+3y2=1D.x2+$\frac{4{y}^{2}}{3}$=1

分析 設(shè)P(x0,y0),G(x,y),則$\overrightarrow{PG}$=(x-x0,y-y0),$\overrightarrow{GO}$=(-x,-y),由$\overrightarrow{PG}$=2$\overrightarrow{GO}$,即可求得$\left\{\begin{array}{l}{{x}_{0}=3x}\\{{y}_{0}=3y}\end{array}\right.$,代入橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,即可求得G的軌跡方程.

解答 解:設(shè)P(x0,y0),G(x,y),由$\overrightarrow{PG}$=(x-x0,y-y0),$\overrightarrow{GO}$=(-x,-y),
由$\overrightarrow{PG}$=2$\overrightarrow{GO}$,即$\left\{\begin{array}{l}{x-{x}_{0}=-2x}\\{y-{y}_{0}=-2y}\end{array}\right.$,整理得:$\left\{\begin{array}{l}{{x}_{0}=3x}\\{{y}_{0}=3y}\end{array}\right.$,
由P在橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,則$\frac{9{x}^{2}}{4}+3{y}^{2}=1$,
故選C.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查向量與圓錐曲線的應(yīng)用,考查軌跡方程的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin(2x+φ)的圖象向右平移$\frac{π}{3}$個單位,與函數(shù)y=sin2x的圖象重合,φ∈(-π,π),則φ=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.-$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計算:(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-log327=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.近幾年,“互聯(lián)網(wǎng)+”已經(jīng)影響了多個行業(yè),在線教育作為現(xiàn)代信息技術(shù)同教育相結(jié)合的產(chǎn)物,也引發(fā)了教育領(lǐng)域的變革.目前在線教育主要包括在線測評、在線課堂、自主學(xué)習(xí)、線下延伸四種模式.為了解學(xué)生參與在線教育情況,某區(qū)從2000名高一學(xué)生中隨機抽取了200名學(xué)生,對他們參與的在線教育模式進行調(diào)查,其調(diào)查結(jié)果整理如下:(其中標(biāo)記“√”表示參與了該項在線教育模式).

教育模式

人數(shù)(人)

在線測評

在線課堂

自主學(xué)習(xí)

線下延伸
25
45
40
30
40
20
(Ⅰ)試估計該區(qū)高一學(xué)生中參與在線課堂教育模式的人數(shù);
(Ⅱ)在樣本中用分層抽樣的方法從參與自主學(xué)習(xí)的學(xué)生中抽取5人,現(xiàn)從這5人中隨機抽取2人,求這2人都參與線下延伸教育模式的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在如下程序框圖中,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出“恭喜中獎!”的概率為( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{7}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$f(x)=\frac{x}{{\sqrt{1+{x^2}}}}$,數(shù)列{an}滿足a1=f(1),an+1=f(an)(n∈N*),則a2017=(  )
A.$\frac{1}{{\sqrt{2016}}}$B.$\frac{1}{{\sqrt{2017}}}$C.$\frac{1}{{\sqrt{2018}}}$D.$\frac{1}{{\sqrt{2019}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集N=Z,集合A={-1,1,2,3,4},B={-2,-1,0,1,2},則(∁UA)∩B=( 。
A.{3,4}B.{-2,3}C.{-2,4}D.{-2,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在四棱錐A-BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點,AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點G,使得二面角D-BG-E的大小為$\frac{π}{3}$?若存在,求$\frac{AG}{AE}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點$P(1,\frac{3}{2})$,離心率$e=\frac{1}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),直線AB與直線l:x=4相交于點M,記PA,PB,PM的斜率分別為k1,k2,k3,求證:k1,k3,k2成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案