【題目】如圖,長方體中, , ,點, , 分別為, , 的中點,過點的平面與平面平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖中畫出這個幾何圖形(說明畫法,不需要說明理由);
(2)求二面角 的余弦值.
【答案】(1)見解析;(2) .
【解析】試題分析:(1)利用平行關(guān)系作圖;(2)建立空間直角坐標(biāo)系,求出兩個法向量, , ,求出二面角。
試題解析:
(1)取的中點,連接, , , ,則交線圍成的幾何圖形如圖:
(2)因為點, 分別為, 的中點, ,
所以,
以為坐標(biāo)原點, 的方向為 軸的正方向,建立如圖所示空間直角坐標(biāo)系 ,則 , , ,
, .
設(shè) 是平面的法向量,則 ,即
所以可取.
同理可求平面的一個法向量為
因為
所以二面角 的余弦值為
試題分析:本題考查立體幾何的二面角求解。一般的,在容易建系的立體幾何問題中,采取空間直角坐標(biāo)系解題比較方便,可以避免找角或其他技巧性方法,將幾何問題轉(zhuǎn)化為代數(shù)計算,只需掌握解題套路,即可解決問題。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,底面ABC為正三角形,EA⊥平面ABC,DC⊥平面ABC,EA=AB=2DC=2a,設(shè)F為EB的中點.
(1)求證:DF∥平面ABC;
(2)求直線AD與平面AEB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: 的左、右頂點分別為A1、A2,點P在C上且直線PA2的斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆江西省南昌市高三第一輪】已知分別為三個內(nèi)角的對邊,且.
(Ⅰ)求;
(Ⅱ)若為邊上的中線, , ,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R).
(1)m=1時,求方程f(x)=g(x)的實根;
(2)若對任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍;
(3)求證: ++…+>ln(2n+1) (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的極值點,試研究函數(shù)的單調(diào)性,并求的極值;
(2)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: , ,,,,.把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年”和“中老年”.
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù)
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注“帶一路”是否和年齡段有關(guān)?
關(guān)注 | 不關(guān)注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
附:參考公式,其中
臨界值表:
/td> | 0.05 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方體,直線與平面所成角為垂直于點為的中點.
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使得二面角的余弦值為?若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com