半徑為4的球面上有A、B、C、D四點,且滿足·=0,·=0,·=0,則S△ABC+S△ACD+S△ADB的最大值為(    )

A.8                   B.16                      C.32                   D.64

解析:由題設知AB、AC、AD兩兩垂直,設AB=a,AC=b,AD=c,則a2+b2+c2=(2×4)2=64.而S△ABC+S△ACD+S△ADB=(ac+bc+ac)≤(a2+b2+c2)=32.

答案:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

半徑為4的球面上有A、B、C、D四點,AB,AC,AD兩兩互相垂直,則△ABC、△ACD、△ADB面積之和S△ABC+S△ACD+S△ADB的最大值為( 。
A、8B、16C、32D、64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在半徑為4的球面上有A、B、C、D四個點,且AB=CD=4,則四面體ABCD體積最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•桂林一模)半徑為4的球面上有A,B,C,D四點,且滿足AB⊥AC,AC⊥AD,AD⊥AB,則S△ABC+S△ACD+S△ADB的最大值為(S為三角形的面積)
32
32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為4的球面上有A、B、C、D四點,且AB、AC、AD兩兩互相垂直,則△ABC,△ACD,△ADB面積之和的最大值是
32
32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為4的球面上有A、B、C、D四個點,且滿足
AB
?
AC
=0,
AC
?
AD
=0,
AD
?
AB
=0,則S△ABC+S△ACD+S△ADB的最大值為(  )
A、64B、32C、16D、8

查看答案和解析>>

同步練習冊答案