【題目】為及時(shí)了解適齡公務(wù)員對(duì)開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如下表:
(1)判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會(huì)上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問,求這三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來參加座談,設(shè)邀請(qǐng)的2人中來自省女聯(lián)的人數(shù)為,求的分布列及數(shù)學(xué)期望.
男性公務(wù)員 | 女性公務(wù)員 | 總計(jì) | |
有意愿生二胎 | 30 | 15 | 45 |
無意愿生二胎 | 20 | 25 | 45 |
總計(jì) | 50 | 40 | 90 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)沒有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”;(2);(3)分布列見解析,期望為.
【解析】
試題分析:(1)由公式計(jì)算出,對(duì)照所給數(shù)據(jù)可得結(jié)論;
(2)“至少有1人”這類問題可以從反入手,其反面是“沒有1人”同意生二胎,從題中提供的數(shù)據(jù)知男公民中每個(gè)人有意愿生二胎的概率是,無意愿生二胎的概率是,各人意愿顯然相互獨(dú)立,由相互獨(dú)立事件的概率公式可得;
(3)首先由題意知的可能值是0,1,2,由古典概型概率公式知,由此可得分布列,再由期望公式可計(jì)算出期望.
試題解析:(1)由于
故沒有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”.
(2)由題意可得,一名男公務(wù)員要生二胎意愿的概率為,無意愿的概率為,記事件:這三人中至少有一人要生二胎,且各人意愿相互獨(dú)立
則
答:這三人中至少有一人有意愿生二胎的概率為.
(3) 可能的取值為
0 | 1 | 2 | |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的最小正周期;
(2)求的單調(diào)區(qū)間;
(3)求圖象的對(duì)稱軸,對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)當(dāng)時(shí),判斷的單調(diào)性,并說明理由;
(3)求實(shí)數(shù)的范圍,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),都存在以為邊長的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列,,為數(shù)列是前項(xiàng)和,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線通過一塊玻璃,其強(qiáng)度要損失10%,把幾塊這樣的玻璃重疊起來,設(shè)光線原來的強(qiáng)度為,通過塊玻璃以后強(qiáng)度為.
(Ⅰ)寫出關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)通過多少塊玻璃以后,光線強(qiáng)度減弱到原來的以下.(lg3≈0.4771).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;
(2)若函數(shù)(其中為的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量和中位數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤不少于4800元的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等比數(shù)列, 為數(shù)列的前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式.
(2)設(shè)且為遞增數(shù)列.若求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com