分析 (1)問題轉(zhuǎn)化為解不等式組問題,求出不等式的解集即可;
(2)要使f(x)≥|a-1|對任意實(shí)數(shù)x∈R成立,得到|a-1|≤3,解出即可.
解答 解:(1)不等式f(x)>5即為|x+2|+|x-1|>5,
等價(jià)于$\left\{\begin{array}{l}{x<-2}\\{-x-2-x+1>5}\end{array}\right.$或 $\left\{\begin{array}{l}{-2≤x≤1}\\{x+2-x+1>5}\end{array}\right.$或 $\left\{\begin{array}{l}{x>1}\\{x+2+x-1>5}\end{array}\right.$,
解得x<-3或x>2,
因此,原不等式的解集為{x|x<-3或x>2};
(2)f(x)=|x+2|+|x-1|≥|x+2-x+1|=3,
若f(x)≥a2-2a恒成立,則a2-2a-3≤0,
則(a-3)(a+1)≤0,解得:-1≤a≤3.
點(diǎn)評 本題考查了絕對值不等式問題,考查分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{5}{2}$ | B. | -1 | C. | $\frac{5}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 1 | C. | 17 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -2 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 6$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com