7.若x軸為曲線f(x)=x3-ax-$\frac{1}{4}$的切線,則a=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 求函數(shù)的導數(shù),利用導數(shù)的幾何意義進行求解即可.

解答 解:f(x)=x3-ax-$\frac{1}{4}$,函數(shù)的導數(shù)f′(x)=3x2-a,
∵x軸為曲線f(x)=x3-ax-$\frac{1}{4}$的切線,
∴f′(x)=0,
設過點為(m,0),
則m3-am-$\frac{1}{4}$=0,①
則f′(m)=3m2-a=0,②
由①②得m=-$\frac{1}{2}$,a=$\frac{3}{4}$,
故選:A.

點評 本題主要考查導數(shù)的幾何意義,設出切點坐標,求函數(shù)的導數(shù),建立方程關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.方程4x-4•2x-5=0的解是( 。
A.x=0或x=log25B.x=-1或x=5C.x=log25D.x=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{{a•{2^x}-2+a}}{{{2^x}+1}},\;\;a∈R$.
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.若f(x)=2x+3,則f(3)=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.F1,F(xiàn)2是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩焦點,E上任一點P滿足$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$≥$\frac{1}{2}{a^2}$,則橢圓E的離心率的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點.
(1)求證:平面PAB∥平面EFG;
(2)證明:平面EFG⊥平面PAD;
(3)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若命題“直線y=kx+2與圓x2+y2=1有公共點”是假命題,則實數(shù)k的取值范圍是(-$\sqrt{3},\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.向量$\overrightarrow{a}$=(3,4)與向量$\overrightarrow$=(1,0)的夾角大小為arccos$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,$bcosA+\sqrt{3}bsinA-c-a=0$.
(1)求角B的大;     
(2)若$b=\sqrt{3}$,求a+c的最大值.

查看答案和解析>>

同步練習冊答案