11.二面角α-l-β為60°,A、B是棱上的兩點,AC、BD分別在半平面α、β內(nèi),AC⊥l,BD⊥l且AB=AC=1,BD=2,則CD的長為( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 由題設(shè)條件,結(jié)合向量法求出CD的長.

解答 解:如圖,
∵在一個60°的二面角的棱上,有兩個點A、B,AC、BD分別是在這個二面角的兩個半平面內(nèi)垂直于AB的線段,
AB=AC=1,BD=2,
∴$\overrightarrow{CA}•\overrightarrow{AB}=\overrightarrow{AB}•\overrightarrow{BD}=0$,<$\overrightarrow{CA},\overrightarrow{DB}$>=120°,
∴${\overrightarrow{CD}}^{2}=(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD})^{2}$=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}+2\overrightarrow{CA}•\overrightarrow{AB}$$+2\overrightarrow{AB}•\overrightarrow{BD}+2\overrightarrow{CA}•\overrightarrow{BD}$
=1+1+4+2×1×2×cos120°=4.
∴|CD|=$|\overrightarrow{CD}|=2$.
故選:C.

點評 本題考查線段長的求法,解題時要注意空間思維能力的培養(yǎng),注意向量法的合理運用,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓E經(jīng)過點A(2,3),對稱軸為坐標軸,焦點F1,F(xiàn)2在x軸上,焦距與長軸長的比為$\frac{1}{2}$.
(1)求橢圓E的方程;
(2)求∠F1AF2的角平分線所在直線l的方程;
(3)在橢圓E上是否存在關(guān)于直線l對稱的相異兩點?若存在,請找出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d的圖象與x軸有三個不同交點(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2時取得極值,則x1•x2的值為(  )
A.4B.5C.6D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)f(x)是定義在R上的函數(shù),其導函數(shù)為f′(x),若f(x)-f′(x)<1,f(0)=2016,則不等式f(x)>2015ex+1的解集為( 。
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(2015,+∞)D.(-∞,0)∪(2015,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在六面體中ABCD-A1B1C1D1,四邊形ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
(1)求證:A1C1與AC共面,B1D1與BD共面.
(2)求二面角A-BB1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=-x3+3x2+9x+m在區(qū)間[-2,2]上的最大值是20,則實數(shù)m的值等于-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面C-OB1-B二面角θ的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.方程2x2+5x-3=0的解集為{-3,$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.定義區(qū)間I=(α,β)的長度為β-α,已知函數(shù)f(x)=ax2+(a2+1)x,其中a<0,區(qū)間I={x|f(x)>0}.
(Ⅰ)求區(qū)間I的長度;
(Ⅱ)設(shè)區(qū)間I的長度函數(shù)為g(a),試判斷函數(shù)g(a)在(-∞,-1]上的單調(diào)性;
(Ⅲ)在上述函數(shù)g(a)中,若a∈(-∞,-1],問:是否存在實數(shù)k,使得g(k-sinx-3)≤g(k2-sin2x-4)對一切x∈R恒成立,若存在,求出k的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案