(2012•嘉定區(qū)三模)如圖,四棱錐P-ABCD的底面是∠BAD=60°的菱形,且PA=PC,PB=BD,則該四棱錐的主視圖(主視圖投影平面與平面PAC平行)可能是(  )
分析:由已知中四棱錐P-ABCD的底面是∠BAD=60°的菱形,我們根據(jù)棱錐的正視圖為三角形,結(jié)合看不到的棱畫為虛線,看到的棱畫為實(shí)線,比照四個(gè)答案中的圖形,即可得到答案.
解答:解:由已知中的幾何體P-ABCD為四棱錐
故其正視圖的外邊框?yàn)槿切?br />又∵四棱錐P-ABCD的底面是∠BAD=60°的菱形,
∴PD棱在正視圖中看不到,故應(yīng)該畫為虛線,
PB棱在正視圖中可能看到,故應(yīng)該畫為實(shí)線.
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單空間圖形的三視圖,其中要注意三視圖中看不到的棱(或輪廓線)畫為虛線,本題易忽略此點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)已知?jiǎng)訄A圓心在拋物線y2=4x上,且動(dòng)圓恒與直線x=-1相切,則此動(dòng)圓必過(guò)定點(diǎn)
(1,0)
(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=t
y=
3
t
(l為參數(shù)),以O(shè)x的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,則圓C上的點(diǎn)到直線l距離的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)設(shè)集合A={x|x<1,x∈R},B={x|x2<4,x∈R},則A∩B=
{x|-2<x<1}
{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)設(shè)a、b∈R,i為虛數(shù)單位,若(a+i)i=b+i,則復(fù)數(shù)z=a+bi的模為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案