【題目】已知橢圓的左、右焦點(diǎn)分別為,直線與橢圓相交于、兩點(diǎn),橢圓的上頂點(diǎn)與焦點(diǎn)關(guān)于直線對稱,且.斜率為的直線與線段相交于點(diǎn),與橢圓相交于、兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求四邊形面積的取值范圍.

【答案】(1)橢圓方程為;(2)四邊形面積的取值范圍.

【解析】

(1)根據(jù)對稱得,再根據(jù),聯(lián)立方程組解得,(2)根據(jù)垂直得,再聯(lián)立直線方程與橢圓方程,根據(jù)韋達(dá)定理以及弦長公式得,代入可得面積函數(shù)關(guān)系式,最近根據(jù)范圍確定面積范圍.

(Ⅰ)由頂點(diǎn)與焦點(diǎn)關(guān)于直線對稱,知,即

,得,所以橢圓方程為

(Ⅱ) 設(shè)直線方程:,、,

,得,所以

由(Ⅰ)知直線,代入橢圓得,得

由直線與線段相交于點(diǎn),得

,知,

,得,所以

四邊形面積的取值范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù):

125 121 123 125 127 129 125 128 130

129 126 124 125 127 126 122 124 125

126 128

1)填寫下面的頻率分布表:

分組

頻數(shù)累計

頻數(shù)

頻率

合計

2)作出頻率分布直方圖.

3)根據(jù)頻率分布直方圖或頻率分布表求這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點(diǎn),且與拋物線相交于兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)在第四象限,為坐標(biāo)原點(diǎn).

(Ⅰ)當(dāng)中點(diǎn)時,求直線的方程;

(Ⅱ)以為直徑的圓交直線于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的中點(diǎn),是線段上的一點(diǎn),且,,將沿折起使得二面角是直二面角.

(l)求證:平面;

(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)為

當(dāng)時,若函數(shù)R上有且只有一個零點(diǎn),求實(shí)數(shù)a的取值范圍;

設(shè),點(diǎn)是曲線上的一個定點(diǎn),是否存在實(shí)數(shù)使得成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合P={x|xx-2≥0}M={x|axa+3}

1)求集合UP;

2)若a=1,求集合PM;

3)若UPM,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:①當(dāng)為任意實(shí)數(shù)時,直線恒過定點(diǎn)P,則過點(diǎn)P且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程是;②已知雙曲線的右焦點(diǎn)為,一條漸近線方程為 ,則雙曲線的標(biāo)準(zhǔn)方程是;③拋物線的準(zhǔn)線方程為;④已知雙曲線 ,其離心率,則的取值范圍是.

其中正確命題的序號是___________.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知OABC內(nèi)一點(diǎn),AOB=150°,BOC=90°,設(shè)=,=,=,||=2,||=1,||=3,試用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)軸,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線交于兩點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊答案