如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,CD∥AP,AD與BC相交于點(diǎn)E,F為CE上一點(diǎn),且DE2=EF·EC.
(1)求證:∠P=∠EDF;
(2)求證:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的長.
(1) (2)見解析 (3)
【解析】
(1)證明 ∵DE2=EF·EC,∴DE∶CE=EF∶ED.
∵∠DEF是公共角,∴△DEF∽△CED.
∴∠EDF=∠C.
∵CD∥AP,∴∠C=∠P.
∴∠P=∠EDF.
(2)證明 ∵∠P=∠EDF,∠DEF=∠PEA,
∴△DEF∽△PEA.
∴DE∶PE=EF∶EA.即EF·EP=DE·EA.
∵AD、BC相交于點(diǎn)E,
∴DE·EA=CE·EB.∴CE·EB=EF·EP.
(3)解 ∵DE2=EF·EC,DE=6,EF=4,∴EC=9.
∵CE∶BE=3∶2,∴BE=6.
∵CE·EB=EF·EP,∴9×6=4×EP.
解得:EP=.
∴PB=PE-BE=,PC=PE+EC=.
由切割線定理得:PA2=PB·PC,
∴PA2=×,
∴PA=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第七章第2課時練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f0(x)=1-x2,f1(x)=,fn(x)=,(n≥1,n≥N),則方程f1(x)=有________個實數(shù)根,方程fn(x)=有________個實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第2課時練習(xí)卷(解析版) 題型:解答題
已知f(x)=x+-3,x∈[1,2].
(1)當(dāng)b=2時,求f(x)的值域;
(2)若b為正實數(shù),f(x)的最大值為M,最小值為m,且滿足M-m≥4,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第1課時練習(xí)卷(解析版) 題型:填空題
已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},則B中元素的個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第1課時練習(xí)卷(解析版) 題型:解答題
已知集合A={x|ax2-3x+2=0,a∈R}.
(1) 若A是空集,求a的取值范圍;
(2) 若A中只有一個元素,求a的值,并將這個元素寫出來;
(3) 若A中至多有一個元素,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)演練模塊檢測練習(xí)卷(解析版) 題型:填空題
如圖所示,四邊形ABCD內(nèi)接于⊙O,AD∶BC=1∶2,AB=35,PD=40,則過點(diǎn)P的⊙O的切線長是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)演練模塊檢測練習(xí)卷(解析版) 題型:選擇題
如圖,AB為⊙O直徑,MN切⊙O于C,AC=BC,則sin∠MCA=
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)檢測第2講練習(xí)卷(解析版) 題型:選擇題
如圖所示,PA切圓于A,PA=8,直線PCB交圓于C、B,連接AB、AC,且PC=4,AD⊥BC于D,∠ABC=α,∠ACB=β,則的值等于
A. B. C.2 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)2-4練習(xí)卷(解析版) 題型:解答題
(拓展深化)如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,BD∥XY,AC、BD相交于E.
(1)求證:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com