已知曲線C:
(1)求曲線在點(diǎn)(2,4)處的切線方程;
(2)求過點(diǎn)(2,4)的切線方程.
【答案】分析:(1)根據(jù)曲線的解析式求出導(dǎo)函數(shù),把P的橫坐標(biāo)代入導(dǎo)函數(shù)中即可求出切線的斜率,根據(jù)P的坐標(biāo)和求出的斜率寫出切線的方程即可;
(2)設(shè)出曲線過點(diǎn)P切線方程的切點(diǎn)坐標(biāo),把切點(diǎn)的橫坐標(biāo)代入到(1)求出的導(dǎo)函數(shù)中即可表示出切線的斜率,根據(jù)切點(diǎn)坐標(biāo)和表示出的斜率,寫出切線的方程,把P的坐標(biāo)代入切線方程即可得到關(guān)于切點(diǎn)橫坐標(biāo)的方程,求出方程的解即可得到切點(diǎn)橫坐標(biāo)的值,分別代入所設(shè)的切線方程即可.
解答:解:(1)∵P(2,4)在曲線 y=x3+上,且y'=x2
∴在點(diǎn)P(2,4)處的切線的斜率k=y'|x=2=4;
∴曲線在點(diǎn)P(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
(2)設(shè)曲線 y=x3+與過點(diǎn)P(2,4)的切線相切于點(diǎn)A(x,x+),
則切線的斜率 k=y′|x=x0=x02,
∴切線方程為y-(x+)=x2(x-x),
即 y=x•x-x+,
∵點(diǎn)P(2,4)在切線上,
∴4=2x2-x+,
即x3-3x2+4=0,
∴x3+x2-4x2+4=0,
∴(x+1)(x-2)2=0
解得x=-1或x=2
故所求的切線方程為4x-y-4=0或x-y+2=0.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,是一道綜合題.學(xué)生在解決此類問題一定要分清“在某點(diǎn)處的切線”,還是“過某點(diǎn)的切線”;同時(shí)解決“過某點(diǎn)的切線”問題,一般是設(shè)出切點(diǎn)坐標(biāo)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+
y2
a
=1
,直線l:kx-y-k=0,O為坐標(biāo)原點(diǎn).
(1)討論曲線C所表示的軌跡形狀;
(2)當(dāng)a=-1時(shí),直線l與曲線C相交于兩點(diǎn)M,N,試問在曲線C上是否存在點(diǎn)Q,使得
OM
+
ON
OQ
?若存在,求實(shí)數(shù)λ的取值范圍;若不存在,請(qǐng)說明理由;
(3)若直線l與x軸的交點(diǎn)為P,當(dāng)a>0時(shí),是否存在這樣的以P為直角頂點(diǎn)的內(nèi)接于曲線C的等腰直角三角形?若存在,求出共有幾個(gè)?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:(x-1)2+y2=1,點(diǎn)A(-1,0)及點(diǎn)B(2,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被曲線C攔住,則a的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知曲線C:
x2
a2
+y2=1
(a>0),曲線C與x軸相交于A、B兩點(diǎn),直線l過點(diǎn)B且與x軸垂直,點(diǎn)S是直線l上異于點(diǎn)B的任意一點(diǎn),線段SA與曲線C交于點(diǎn)T,線段TB與以線段SB為直徑的圓相交于點(diǎn)M.
(I)若點(diǎn)T與點(diǎn)M重合,求
AT
AS
的值;
(II)若點(diǎn)O、M、S三點(diǎn)共線,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
y2
m
+x2=1;
(1)由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,點(diǎn)P在
EF
上,且 
EP
=-
1
3
PF
.問:點(diǎn)P的軌跡可能是圓嗎?請(qǐng)說明理由;
(2)如果直線l的斜率為
2
,且過點(diǎn)M(0,-2),直線l交曲線C于A,B兩點(diǎn),又
MA
MB
=-
9
2
,求曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案