【題目】已知函數(shù),
(1)若,求曲線在點處的切線方程;
(2)對任意的,,恒有,求正數(shù)的取值范圍.
【答案】(1) (2)
【解析】
(1)求出函數(shù)的導數(shù),進而求得,由點斜式直接寫出直線方程.
(2)求出2a+1的范圍,可得f(x)在[1,2]遞減,由題意可得原不等式即為對任意的a∈[,],x1,x2∈[1,2]恒成立,令g(x)=f(x),即有g(x1)<g(x2),即為g(x)在[1,2]遞增,求出g(x)的導數(shù),令導數(shù)大于等于0,再由一次函數(shù)的單調(diào)性可得只需以.
即x3﹣7x2+6x+λ≥0對x∈[1,2]恒成立,令h(x)=x3﹣7x2+6x+λ,求出導數(shù),求得單調(diào)區(qū)間和最小值,解不等式即可得到所求范圍.
(1),所以,又f(3)=,
所以由點斜式方程可得切線方程為.
(2),
當時,,所以在上為減函數(shù),
不妨設則,等價于
所以,在,上恒成立。
令,則在上為增函數(shù),所以在 上恒成立.
而化簡得,
所以,其中
因為,所以
所以只需,即x3﹣7x2+6x+λ≥0對x∈[1,2]恒成立,
令h(x)=x3﹣7x2+6x+λ,h′(x)=3x2﹣14x+6≤0在1≤x≤2恒成立,
則有h(x)在[1,2]遞減,可得h(2)取得最小值,且為﹣8+λ≥0,
解得λ≥8.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合
(1)判斷8,9,10是否屬于集合;
(2)已知集合,證明:“”的充分非必要條件是“”;
(3)寫出所有滿足集合的偶數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸方程;
(2)判斷該高三學生的記憶力x和判斷力是正相關還是負相關;并預測判斷力為4的同學的記憶力.
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)滿足,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)如果、、滿足,那么稱比更靠近.當且時,試比較和哪個更靠近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當時,試判斷函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sinx的圖象向右平移個單位,橫坐標縮小至原來的倍(縱坐標不變)得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)g(x)的解析式;
(2)若關于x的方程2g(x)-m=0在x∈[0,]時有兩個不同解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列1,1,3,3,,,…,,是由兩個1,兩個3,兩個,…,兩個按從小到大順序排列,數(shù)列各項的和記為,對于給定的自然數(shù),若能從數(shù)列中選取一些不同位置的項,使得這些項之和恰等于,便稱為一種選項方案,和數(shù)為的所有選項方案的種數(shù)記為.試求:
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).
(Ⅰ)(i)請根據(jù)圖示,將2×2列聯(lián)表補充完整;
優(yōu)分 | 非優(yōu)分 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認為“該學科成績與性別有關”?
(Ⅱ)將頻率視作概率,從高三年級該學科成績中任意抽取3名學生的成績,求至少2名學生的成績?yōu)閮?yōu)分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com