【題目】分別求適合下列條件的標(biāo)準(zhǔn)方程:
(1)實(shí)軸長為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(2)頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程。
【答案】(1) 橢圓的標(biāo)準(zhǔn)方程為;(2) 焦點(diǎn)在x軸上的雙曲線的方程為,焦點(diǎn)在y軸上雙曲線的方程為.
【解析】試題分析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,(a>b>0),由已知,2a=12,e=,由此能求出橢圓的標(biāo)準(zhǔn)方程.(2)當(dāng)雙曲線焦點(diǎn)在x軸上時(shí),設(shè)所求雙曲線的方程為=1,由題意,得, ,由此能求出焦點(diǎn)在x軸上的雙曲線的方程;同理可求當(dāng)焦點(diǎn)在y軸上雙曲線的方程.
(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為由已知, ,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)當(dāng)焦點(diǎn)在x軸上時(shí),設(shè)所求雙曲線的方程為=1
由題意,得 解得, .
所以焦點(diǎn)在x軸上的雙曲線的方程為.
同理可求當(dāng)焦點(diǎn)在y軸上雙曲線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x﹣2x+1+3,當(dāng)x∈[﹣2,1]時(shí),f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過點(diǎn)P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過上一點(diǎn)的切線的方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)且斜率不為的直線交橢圓于兩點(diǎn),試問軸上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,且橢圓上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,記函數(shù)fk(x)在[﹣1,1]上的最大值為M,最小值為m,求M﹣m≤4時(shí)的b的取值范圍;
(3)判斷是否存在大于1的實(shí)數(shù)a,使得對任意x1∈[a,2a],都有x2∈[a,a2]滿足等式:g(x1)+g(x2)=p,且滿足該等式的常數(shù)p的取值唯一?若存在,求出所有符合條件的a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,證明:函數(shù)是上的減函數(shù);
(Ⅱ)若曲線在點(diǎn)處的切線與直線平行,求的值;
(Ⅲ)若,證明: (其中…是自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com