【題目】下列四個結(jié)論: ①函數(shù) 的值域是(0,+∞);
②直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號為

【答案】④
【解析】解:對于①,∵ ,∴函數(shù) 的值域是(0,1)∪(1,+∞),故錯; 對于②,直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1或0,故錯;
對于③,過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3或y=2x,故錯;
對于④,若圓柱的底面直徑與高都等于球的直徑2r,則圓柱的側(cè)面積等于2πr2r=4πr2等于球的表面積,故正確.
故答案為:④
①, ,∴函數(shù) ≠1;
②,a=0時,直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0也平行;
③,過點A(1,2)且在坐標軸上的截距相等的直線還有過原點的直線;
④,利用公式求出圓柱的側(cè)面積即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用計算機隨機產(chǎn)生的有序二元數(shù)組(x,y)滿足﹣1≤x≤1,﹣1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)上任意一點到兩焦點距離之和為 ,離心率為 ,左、右焦點分別為F1 , F2 , 點P是右準線上任意一點,過F2作直線PF2的垂線F2Q交橢圓于Q點.
(1)求橢圓E的標準方程;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)證明:直線PQ與橢圓E只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x,有下列四個結(jié)論:①f(x)的最小正周期為π;②f(x)在區(qū)間[﹣ , ]上是增函數(shù);③f(x)的圖象關(guān)于點( ,0)對稱;④x= 是f(x)的一條對稱軸.其中正確結(jié)論的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為函數(shù)圖像的一部分,其中點是圖像的一個最高點,點是與點相鄰的圖像與軸的一個交點.

求函數(shù)的解析式;

若將函數(shù)的圖像沿軸向右平移個單位,再把所得圖像上每一點的橫坐標都變?yōu)樵瓉淼?/span>(縱坐標不變),得到函數(shù)的圖像,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,游樂場中摩天輪勻速逆時針旋轉(zhuǎn),每轉(zhuǎn)一圈需要6min,其中心距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點P的起始位置在最低點處,在時刻t(min)時點P距離地面的高度為f(t)=Asin(wt+φ)+h(A>0,w>0,﹣π<φ<0,t≥0).
(1)求f(t)的單調(diào)區(qū)間;
(2)求證:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,A(1,1)、B(7,3)、D(4,6),點M是線段AB的中點線段CM與BD交于點P.
(1)求直線CM的方程;
(2)求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級在高校自主招生期間,把學(xué)生的平時成績按“百分制”折算并排序,選出前300名學(xué)生,并對這300名學(xué)生按成績分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列. (Ⅰ)請在圖中補全頻率分布直方圖;
(Ⅱ)若B大學(xué)決定在成績高的第4,5組中用
分層抽樣的方法抽取6名學(xué)生,并且分成2組,每組3人
進行面試,求95分(包括95分)以上的同學(xué)被分在同一個小組的概率.

查看答案和解析>>

同步練習(xí)冊答案