已知點、是雙曲線,)的左、右焦點,為坐標原點,點在雙曲線的右支上,且滿足,,則雙曲線的離心率的取值范圍為( )

A. B.

C. D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知6只小白鼠有1只被病毒感染,需要通過對其化驗病毒DNA來確定是否感染.下面是兩種化驗方案:方案甲:逐個化驗,直到能確定感染為止.方案乙:將6只分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒DNA,則表明感染在這三只當中,然后逐個化驗,直到確定感染為止;若結(jié)果不含病毒DNA,則在另外一組中逐個進行化驗.
(1)求依據(jù)方案乙所需化驗恰好為2次的概率.
(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要化驗費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知圓C:(x-1)2+y2=r2(r>0).設(shè)條件p:0<r<3,條件q:圓C上至多有2個點到直線x-$\sqrt{3}$y+3=0的距離為1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題,其中說法錯誤的是(  )
A.雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1的焦點到其漸近線距離為$\sqrt{3}$
B.若命題p:?x∈R,使得sinx+cosx≥2,則¬p:?x∈R,都有sinx+cosx<2
C.若p∧q是假命題,則p、q都是假命題
D.設(shè)a,b是互不垂直的兩條異面直線,則存在唯一平面α,使得a?α,且b∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.現(xiàn)有4名同學去參加校學生會活動,共有甲、乙兩類活動可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動,擲出點數(shù)為1或2的人去參加甲類活動,擲出點數(shù)大于2的人去參加乙類活動.
(1)求這4個人中恰有2人去參加甲類活動的概率;
(2)用X,Y分別表示這4個人中去參加甲、乙兩類活動的人數(shù).記ξ=|X-Y|,求隨機變量ξ的分布列與數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:選擇題

向量,滿足,且,則的夾角的余弦值為( )

A.0 B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(文)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的最小正周期;

(2)若將的圖象向右平移個單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(文)試卷(解析版) 題型:選擇題

已知,則“”是“”的( )

A.充分非必條件 B.必要不充分條件

C.充要條件 D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在四棱錐P-ABCD中,△ABC,△ACD都為等腰直角三角形,∠ABC=∠ACD=90°,△PAC是邊長為2的等邊三角形,PB=$\sqrt{2}$,E為PA的中點.
(Ⅰ)求證:BE⊥平面PAD;
(Ⅱ)求二面角C-PA-D的余弦值.

查看答案和解析>>

同步練習冊答案