已知一曲線是與兩個(gè)定點(diǎn)O(0,0)、A(3,0)距離的比為的點(diǎn)的軌跡,求出曲線的方程.

(x+1)2+y2=4.


解析:

在給定的平面直角坐標(biāo)系中,設(shè)M(x,y)是曲線上的任意一點(diǎn),點(diǎn)M在曲線上的條件是.

由兩點(diǎn)的距離公式,上式用坐標(biāo)表示為.

兩邊平方并化簡(jiǎn),得曲線方程為x2+y2+2x-3=0.將方程配方,得(x+1)2+y2=4.

∴所求曲線是圓心為C(-1,0),半徑為2的圓(如上圖所示).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:天利38套《2008全國(guó)各省市高考模擬試題匯編 精華大字版》、數(shù)學(xué)理 題型:044

已知兩定點(diǎn)A(0,-1),C(0,2),動(dòng)點(diǎn)M滿足∠MCA=2∠MAC.

(Ⅰ)求動(dòng)點(diǎn)M的軌跡Q的方程;

(Ⅱ)設(shè)曲線Q與y軸的交點(diǎn)為B,點(diǎn)E、F是曲線Q上兩個(gè)不同的動(dòng)點(diǎn),且·=0,直線AE與BF交于點(diǎn)P(x0,y0),求證:為定值;

(Ⅲ)在第(Ⅱ)問(wèn)的條件下,求證:過(guò)點(diǎn)和點(diǎn)E的直線是曲線Q的一條切線.

(Ⅳ)在第(Ⅱ)問(wèn)的條件下,試問(wèn)是否存在點(diǎn)E使得··(或||=||·||),若存在,求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩定點(diǎn)A(0,-1),C(0,2),動(dòng)點(diǎn)M滿足∠MCA=2∠MAC.

(Ⅰ)求動(dòng)點(diǎn)M的軌跡Q的方程;

(Ⅱ)設(shè)曲線Q與y軸的交點(diǎn)為B,點(diǎn)B、F是曲線Q上兩個(gè)不同的動(dòng)點(diǎn),且=0,直線AE與BF交于點(diǎn)P(x0,y0),求證:為定值;

(Ⅲ)在第(Ⅱ)問(wèn)的條件下,求證:過(guò)點(diǎn)p′(0,y0)和點(diǎn)E的直線是曲線Q的一條切線.

(Ⅳ)在第(Ⅱ)問(wèn)的條件下,試問(wèn)是否存在點(diǎn)E使得(或),若存在,求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案