17.下列函數(shù)以π為周期,且區(qū)間在(0,$\frac{π}{2}$)上單調(diào)遞增的是( 。
A.y=2sinxB.y=|cosx|C.y=sin(2x-$\frac{π}{2}$)D.y=tan2x

分析 根據(jù)題意,對選項中的函數(shù)進行分析、判斷,選出符合題意的函數(shù)即可.

解答 解:對于A,函數(shù)y=2sinx是以2π為周期,不滿足題意;
對于B,函數(shù)y=|cosx|,在區(qū)間(0,$\frac{π}{2}$)上單調(diào)遞減函數(shù),不滿足題意;
對于C,函數(shù)y=sin(2x-$\frac{π}{2}$)=-cos2x,周期為π,且在區(qū)間(0,$\frac{π}{2}$)上單調(diào)遞增,滿足題意;
對于D,y=2tan2x,周期為$\frac{π}{2}$,不滿足題意.
故選:C.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知復數(shù)z滿足|z|=1,則|z-3-4i|的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.${∫}_{0}^{2}$(1-2x2)dx的值等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.-$\frac{4}{3}$D.-$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=$\frac{2}{3}{a_n}$+n-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)當a3=0時,求λ的值;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)設0<a<b,Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知三條側(cè)棱兩兩垂直的正三棱錐的俯視圖如圖所示,左視圖的面積是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某三棱錐的三視圖如圖所示,則該三棱錐的體積是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.過點P(2,1)作直線l交x,y正半軸于A,B兩點,當|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|取到最小值時,直線l的方程是( 。
A.x+y-3=0B.x+2y-4=0C.x-y+3=0D.x-2y-4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.化簡(${\frac{81}{16}}$)${\;}^{\frac{3}{4}}}$=$\frac{27}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知映射f:A→B,A=B=R對應法則f:x→y=x2+2x,對于實數(shù)k∈B在A中沒有原像,則k的取值范圍是( 。
A.k<-1B.k≤-1C.k>-1D.k≥-1

查看答案和解析>>

同步練習冊答案